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ABSTARCT 

Imaging Hyperspectral data are advent as potential solutions in modeling, discrimination and mapping of vegetation species. 

Hyperspectral remote sensing provides valuable information about vegetation type, leaf area index, chlorophyll, and leaf nutrient 

concentration. Estimation of these vegetation parameters has been made possible by calculating various vegetation indices (VIs), 

usually by ratioing, differencing, ratioing differences and  combinations of suitable spectral band. This paper presents a ground-based 

hyperspectral imaging system for characterizing vegetation spectral features. In this study, a ground-based hyperspectral imaging 

data (AISA VNIR 400-960 nm, Spectral Resolution @ 2.5nm) was used for spectral vegetation discrimination and characterization of 

natural desertic  tree species. This study assessed the utility of hyperspectral imagery of 240 narrow bands in discrimination and 

classification of  desert tree species in Jodhpur region using ENVI software. Vegetation indices derived from hyperspectral images 

used in the Analysis for tree species classification discrimination study. Prominent occurring two desertic tree species, viz., Neem 

and Babul in Jodhpur region could be effectively discriminated. Study demonstrated the potential utility of narrow spectral bands of 

Hyperspectral Imaging data in discriminating vegetation species in a desertic terrain. 

1.0 INTRODUCTION 

Remote sensing is the method of acquire data about the Earth’s 

surface without physical contact with the object. The most 

significant advancement in the remote sensing has been the 

development of hyperspectral sensors and software to analyze 

the resulting image data.  From last decade hyperspectral image 

analysis has developed in the most powerful and fastest growing 

technologies in the field of remote sensing. 

Hyperspectral images are spectrally over determined, which 

means that they provide sufficiency spectral information to 

identify and distinguish spectrally distinct materials. 

Hyperspectral imagery offers the potential for accurate and 

complete information extraction. The ability of hyperspectral 

data to improve the characterization, discrimination, modeling, 

and mapping of vegetation, when compared with broadband 

multispectral remote sensing, is well known [8]. Hyperspectral 

data acquired from field based Aisa hyperspectral system in the 

400–960 nm spectrum, provides important information about 

vegetation type, leaf area index, chlorophyll, and leaf nutrient 

concentration which are used to identify ecosystem and 

vegetation growth. 

2.0 STUDY AREA 

The Thar desert in Rajasthan is bound by North latitude of 

24˚30' and 30˚0 and East Longitude of 60˚30' and 76˚0. Average 

elevation of this undulating desertic terrain varies from 200 m to 

300 m MSL. The study area is located in arid part of western 

Rajasthan with latitude of 26º 8' 30" to 26º 23' 28" North and 

longitude of 72º 52' 46" to 73º 10' 52" East (Fig.1) and total 

coverage area of 80 sq. km. Its general topography is 

characterized by the hills located in the North and North-west 

and altitude of 241 m above Mean Sea Level.  The climate is 

characterized as arid to semiarid with long hot summer, with 

low rainfall and sparse vegetation The common landforms are 

hill slopes, rocky/gravelly pediments, flat buried pediment, 

alluvial plains, palaeo channels, hammada and number of saline 

depressions or playa.  

Fig. 1.  Map of the Study Area. 

3.0 DATA USED AND METHODOLOGY 

The aim of this paper is to measurement and analysis of 

Hyperspectral data and spectral signatures of the prominent 

vegetation in the study area.  False Colour Images of 

Hyperspectral data is used to image processing for estimation of 

vegetation index and signatures. ENVI software are used for 

data interpretation, subseting and analysis. Prominent vegetation 

species are shown in Table-1. The detailed methodology flow 

chart is given in Fig.2. 

Table-1 Vegetation Species for Hyperspectral data 

collection 

S.No. Species Local 

Name 

Scientific Name 

1 Neem Azadirachta indica 

2 Babul Acacia nilotica 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W6, 2019 
ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”, 18–20 February 2019, New Delhi, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W6-363-2019 | © Authors 2019. CC BY 4.0 License. 363

mailto:sohanlb@yahoo.com


 
 

Fig.2. Methodology Flow Chart 

 

 

3.1 Hyperspectral Imaging System: 

 

Hyper-spectral imaging system covers the VIS-NIR region of 

electromagnetic spectrum. The data that the system generates 

are hyper-spectral Images of the scene in its field of view.  The 

data consists of 240 images of the scene. Each image pertains to 

a specific electromagnetic band of about 2.5nanometer. All the 

240 images put together cover the visible and near infrared 

region (400nm thru’ 960nm). It has separate input for measuring 

incident solar irradiance through Fiber Optic Down welling 

Irradiance Sensor and 1mrad. FOV: 30O X 60O (Spatial 

resolution of 1cm from height of 10m). The data collected from 

the system needs further analysis. The analysis is aimed at 

understanding the implications of the measurements carried out. 

Spectral analysis gives the insight into the blending of the 

various objects with their expected surrounding in terms of 

reflection at different wavelengths and spatial analysis gives us 

the overall insight of merging of the object and its parts thereof 

with the background.  

 

ENVI software 3D Cube tool is used to generate a color-

composite data cube image with the spectral slice of the top row 

and far-right column in a perspective view. The spectral pieces 

are stretched and a selected color table is applied. Two 

dimensions of the image-cube are the spatial dimensions of the 

scene, and the third dimension is the wavelength (Fig.3). In this 

way, each spatial pixel in the image has an associated 

reflectance spectrum (Cucci, Costanza; Delaney, John K; 

Picollo, Marcello, 2016). 

 

3.2 Processing of Hyperspectral Data: 

 

Hyperspectral data is a superset of data with hundreds of bands. 

It is very voluminous. For a given application, only a small 

subset of the hyperspectral data is generally used. All the other 

bands are redundant as far as the particular application is 

concerned. Identification of such useful subset is the initial step 

in the hyperspectral data analysis. In this work, Hyperspectral 

data of the prominent vegetation species were acquired from 

height of 2 metre using a Tripod mounted Hyperspectral 

Imaging System. Fig.4(a,b) shows the false color composite 

(FCC) and True color composite (TCC) images of the area of 

interest, synthesized from the hyperspectral data cube. At 2 

metre height, the system provides data with spatial resolution of 

2mm.  

 

 
Fig.3. Hyperspectral image cube of 240 bands (R:177, 

G:119, B:59).   

 

   

 
 

Fig.4. (a) FCC Composite Image (b) TCC Composite Image 

 

 

3.3 Minimum Noise Transform 

 

The data cube was subjected to Forward Minimum Noise 

Fraction (MNF) Transform to find out the dimensionality of the 

data. The Minimum Noise Fraction (MNF) transform 

determines the inherent dimensionality of image data and 

consequently segregates the noise in the data for improved 

subsequent processing (Boardman and Kruse, 1994). It 

essentially gives us an idea that for a given image and sensor 

attributes, how many bands of data will have useful 

information. The result is a set of images, in MNF domain, with 

as many bands as in the original data cube, with decreasing 

information content. Additionally, from the plot on the Eigen 

value of these bands, we can find out the useful number of 

bands. Bands with Eigen values more than one will have 

information whereas remaining bands will be dominantly noise. 

The data dimensionality indicates the number of intrinsic 

endmembers in the data set. The eigenvalue closer to 1 indicates 

more noise in the transformed band. From Fig.5-7, we can 

derive that about 10 bands of data will be useful for our 

application. In an attempt to remove/reduce noise component, 

Inverse MNF is performed using only the first 10 bands. This 

results in 240 bands of noise-reduced data in original image 

domain. These images are used in further analysis. 
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Fig. 6: MNF transform bands (a) MNF-Band2 (b) MNF-

Band-7 and (c) MNF-Band-10. 

 

 
Fig.6. MNF plot shows the eigenvalue 5 corresponds to the 

10 first MNF bands. 

 

   

 
Fig.7. 2-D ScatterPlot of MNF EignValue (a) MNF bands 

1&2 (b) MNF bands 39&40 

 

3.4 Pixel Purity Index  

 

Pixel Purity Index (PPI) analysis is used to find out the pure 

pixels in the MNF transformed data. For mixed pixels it gives a 

measure of their purity. ENVI software used to create the PPI 

by repeatedly projecting n-dimensional scatter plots onto a 

random unit vector. PPI is highly computationally intensive 

process, which involves thousands of iterations. Fig.8 shows the 

progress of the PPI process by plotting the iteration number 

versus number pixels verified. After 10000 iterations, 15425 

pixels were found to be the spectrally purest. There was no need 

for further iterations as the PPI plot behaviour at the higher 

iterations was flat, indicating slim possibilities of finding further 

pixel designated as purest. The resulting Pixel Purity image is 

shown in Fig.9, where the brighter pixels represent higher 

purity. 

 

 
 

Fig.8: The performance of PPI and selected pixels as purest 

pixels versus iteration. 

 

 
 

Fig.9: Pixel Purity Index Image of the Hyperspectral Data. 

 

 

3.5 The n-Dimensional Visualiser  

 

Pure pixels were used for finding endmembers in the image in 

n-Dimensional Visualiser tool. This was achieved through 

locating and automated clustering retrieved 10 endmembers as 

shown in Fig.10.  
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Fig.10. Display of the clustering of purest pixels in the nD-

visualiser. 

 

 

4.0 RESULTS & DISCUSSION 

 

4.1 Spectral Angle Mapper:  

 

SAM is a physically based spectral classifier which uses a n - 

Dimentional angle to classify the pixels to reference spectrum 

(Kruse, Lefkoff et al. 1993). The algorithm detect the spectral 

similarity in spectrums by computing the angle between the 

reference and observed spectrum and use them as vectors with 

dimensions equal to the number of bands. The smaller the 

angular separation, the closer the match between the observed 

and reference spectrum. Pixels further away than the specified 

highest angle threshold in radians are not classified ( Helmi 

Zulhaidi Mohd Shafri at el, 2007). Consequently, it will match 

each spectral pixel signature in the of the study area image to 

the selected endmember vegetation spectral signature. The 

result of SAM classifier algorithm is shown in Fig.11, where the 

desse vegetation is represented by the dark green color, spare 

vegetation as light green colour,  fellow land as yellow and 

other area as black colour.  

 

 

 
 

Fig.11. SAM Classifier of the Study Area 

 

 

4.2 Spectral Data Analysis and discrimnation: 

 

In the next step, for each of the vegetation types spectral 

signature is derived from a set of high purity pixels. The 

spectral signatures derived for the vegetation types is given in 

Fig.12-14. The wavelength region between 400 and 900nm 

provides good separability among the signatures. While almost 

all the sensors in space platform are of broad band type with 

spectral bandwidth of about 70 nanometre, it is worthwhile to 

check the suitability of such broad band data for the envisaged 

application of vegetation mapping.  

 

 
 

Fig.12. Field Photo of Data Acquition Sites of Babul and 

Neem Trees 

 
Fig. 13. Spectral Signature of Neem Trees . 
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Fig.14. Spectral Signature of Babul Trees. 

 

 

4.3 Vegetation Indices Analysis:  

 

The Normalized Difference Vegetation Index (NDVI) 

The most widely used broadband greenness Vegetation Index is 

the NDVI (Rouse et al., 1973). NDVI  measures the differences 

between red and NIR centres for vegetation studies (Jackson, 

Slater and Pinter, 1983; Ma et al., 2007; Sellers, 1985; Tucker, 

1979). NDVI is very useful in comparative analysis as an 

indicator to productivity and chlorophyll canopy content 

(Merton, 1998).  The value of this index varies from -1 to +1. 

the common range for the green vegetation is 0.2 to 0.8 

(Fig.15a). NDVI is defined by following Equation. 

NDVI = (NIR – RED)/(NIR + RED) 

NIR=reflectance at the NIR range of the wavelength 

RED=reflectance at the red range of the wavelength 

 

Simple Ratio Index (NIR/Red):  

This index is related to greenness Image and is described as the 

ratio of light that is scattered in the NIR range to that which is 

absorbed in the red range(Fig.15b). The value range is from 0 to 

around 30, where healthy vegetation falls between values of 2 to 

8 (Chen JM, 1996). 

SR = NIR / RED 

Enhanced Vegetation Index (EVI)  

The  EVI was developed to improve the NDVI by optimizing 

the vegetation signal in the study area by using the blue 

reflectance to correct for soil background signals and reduce 

atmospheric influences including aerosol scattering (Fig.15c). 

EVI is defined by following Equation. 

EVI = (2.5) x (NIR – RED )/ (NIR – 6 RED – 7.5BLUE + 1 ) 

The value of this index ranges from -1 to +1. The common 

range for green vegetation is 0.2 to 0.8 (Liu and Huete, 1995). 

Water band index (WBI) 

The WBI measure the reflectance that is sensitive to changes in 

water canopy content. As the water content of canopies 

vegetation increases, the strength of absorption around 970nm 

increases to that of 900nm (Peñuelas et al. 1993). WBI 

application includes canopy stress analysis, productivity 

prediction, cropland management, and studies of ecosystem. 

The common range of values for green vegetation is 0.8 to 1.2 

(Fig.15d). 

WBI = 900nm / 970nm 

 

 

 

 

 
 

Fig.15. (a) NDVI Image (b) NIR/Red Image (c) EVI Image 

(d) Water Band Index 

 

 

5.0 CONCLUSIONS 

 

The use of Hyperspectral data Proved to be useful in 

discrimination the spatial distribution of the identified 

vegetation species. The above study also highlights the 

importance of HIS spectral signatures vegetation sample for 

discrimination mapping.  Hyperspectral vegetation indices were 

identified for the study of prominent vegetation species 

discrimination. These results are further compared to field 

measurements and subsequent Hyperspectral analysis for 

validate the mapping accuracy.  
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