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ABSTRACT: 

Early detection of crop pest and disease is very critical for taking up suitable control measures to reduce the loss of economic 

yield. Coffee is an important commercial crop in India which is affected by pests and diseases every year resulting in major 

yield loss. White stem borer (Xylotrechus quadripes) is the most serious pest of coffee (Arabica sp.) in India causing 

substantial loss of yield every year. Detection of the infestation in its early stage is quite challenging. In this regard, image 

pattern recognition techniques offer cost effective and scalable solutions. An image library was created representing different 

stages of the plant infestation using camera/mobile devices. Our Convolutional Neural Network (CNN) models use these 

images of healthy and infested plants for early detection of white stem borer infestation. The overall methodology included 

image processing, machine learning, supervised transfer learning and unsupervised auto-encoding techniques to solve the 

problem of early detection and severity of the infestation. Using the Inception v3 transfer learning model, we obtained 

average accuracy of 85.5% which is quite encouraging with limited image datasets. We explore Unsupervised Autoencoder 

models, which can work with limited image datasets. In addition, statistical analysis of long-term climatic factors such as 

temperature, rainfall, humidity and luminescence is explored for reliable detection and diagnosis of the infestation. Based on 

the encouraging results, a mobile application is proposed for near real time monitoring of WSB infestation to help the coffee 

planter’s community 

1. INTRODUCTION

Xylotrechus quadripes is a species of beetle in the family 

of Cerambycidae. Due to its habit of boring through the 

stems of coffee arabica plants, it is commonly known as the 

Coffee White Stem Borer (CWSB), and is considered to be 

one of the most lethal pests for coffee. The impact of WSB 

infestation on coffee yield is extremely pronounced, 

reducing the annual yield in India by almost 60%, and 

resulting in a annual financial loss of around $20 million. 

Farmers today employ many techniques to tackle this 

infestation, namely manual collection of adult pests and 

uprooting of affected plants, swabbing stems with repellent 

chemicals and usage of pheromone traps, which is one of 

the best solutions available currently. These solutions, 

however, are incapable of dampening the effect of the 

infestation, which raises the need for a more robust 

solution. We propose a Deep Learning and Image 

Processing based approach to detect the infestation in its 

early stages, to enable adoption of effective control and re- 

medial measures to save the crop yield. Successful 

adoption of these measures can result in a global reduction 

in coffee prices by approximately 150 %, which would 

impact coffee farmers in a significantly positive manner, as 

Coffee is a popular cash crop. 

--------------------------- 
∗Corresponding author 

2. LITERATURE REVIEW

2.1 White Stem Borer pest 

Xylotrechus quadripes beetle affects coffee arabica 

plants by boring through the stem on reaching adulthood. 

It is a diurnal insect, which means bright sunlight 

favours its activity. The adult beetle lays its eggs inside 

the plant through crevices present in the stem. These 

eggs hatch into grubs, which penetrate the plant through 

the stem making small tunnels through the plant. The 

emergence of ridges on the stem is in accordance with 

the grubs eating through the bark and reaching the hard 

wood. These grubs’ tunnel through the hardwood by 

cutting the hardwood into a fine whitish powder, which 

can be observed on internal inspection of affected 

plants. They then pupate inside the plant, and pupating 

larvae exit the plants on reaching adulthood through the 

stems of the plant. These exits create holes, or bores, on 

the plant which render the plant dead in most cases. The 

emergence of the pest peaks in two distinct periods 

called flight periods - the summer flight, which lasts 

from April to May, and the winter flight which lasts from 

October to December. It had initially been observed that 

winter flight was significantly longer than summer 

flight, however further research indicates that both flight 

periods have an almost equal contribution to infestation. 

It was also found that predominantly higher number of 

males emerged during both flight periods. Infested 

plants demonstrate drooping, wilting and yellowing of 
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leaves and emergence of holes on the stems of the plant. 

Ringing of the barks of main roots occurs below ground 

level and even propagates higher up above the ground. 

Infestation by the pest often results in death of the plant, 

and those trees which survive the attack become highly 

susceptible to termite at- tacks. The cumulative effect of 

pest infestation is extremely detrimental to coffee farmers, 

resulting in an average economic loss of yield of around 2 

to 20% annually. .Previous work and Limitations 

 
Extensive studies have stated that more than 850 different 

kinds of insects have been found to attack coffee, out of 

which the cof- fee leaf miner, the coffee berry borer and the 

coffee White Stem Borer are the most prominent (Ziska, 

2018). All previous stud- ies have primarily dealt with the 

detailed study of the infestation causes and effects, and 

subsequently preventive and management measures to 

ensure reduction in loss of yield. Research has been done 

on detection and prediction of onset of other diseases using 

Machine Learning, DL (Mohanty Sharada P., 2016) and 

ImgProc (Barbedo, 2013), but none of those techniques 

have been applied to the detection of White Stem Borer 

infestation (Beyene, 2018). The major aim of our research 

work is to provide an ensemble approach to detection and 

prediction of WSB infestation using Deep Learning (DL), 

Transfer Learning (TL) and Image Processing (ImgProc). 

Although previous solutions have been proven to work to a 

certain extent, there are some inherent limitations, which 

impose a restriction on obtaining a concise solution. Previ- 

ous solutions involving traditional Machine Learning 

techniques were found to perform well for training data, but 

could not deliver same accuracy results on real-time data 

and these models could not be deployed easily due to lack 

of portability. The effect of environmental parameters like 

temperature, pressure, humidity, sunlight and rainfall have 

been hypothesized to have a significant correlation 

(Kutwayo 2013; Magina 2009; Reddy, 2011; Santaram, 

2008) with emergence of adult CWSB beetles, but all prior 

solutions have been image data driven, and fail to take 

these factors into account. 

 
3. METHODS AND METHODOLOGY 

 
3.1 Data Collection and Dataset 

 
The extensive dataset collected by Coffee Board, was used 

for training and testing of all our models which comprised 

of 2425 images of healthy (400), infested (800) and 

discarded/dead (400) crops from coffee plantations in Belur, 

Chickmagalur, Mudigere, Sakleshpur, Somwarpet and 

Yeslur regions of Karnataka. The images are acquired in 

uncontrolled environments. The disadvantages include non-

uniform lighting, contrast differences, external noise and 

blurriness. This further increases the challenge to detect the 

infestation using images. Our approach to tackle these 

drawbacks, and develop a solution that can work on these 

images, reinstates that it can be used for other similar 

situations where lab-controlled image acquisition method 

takes immense time and effort. 

 

3.1.1 Environmental Factors Systematic 

environmental data collected by Central Institute Coffee 

Research in the research farm at Balehonnur, Karnataka 

during 1999-2006, was analyzed in the present study. 

The dataset included temperature (minimum maximum), 

sunlight, rainfall and humidity along with number of 

total beetles emerged. 

 

3.2 Pre-processing 

 

A salient feature of non-regularized Convolutional 

Neural Net- works is that there is a high capacity for 

learning. This means that noise and legitimate data can 

be learnt equally well. Thus, there arises the need for an 

adequately large dataset which has been cleaned and 

structured. Data Augmentation addresses the two 

possible shortcomings which may arise- lack of data and 

presence of noisy data. The potency of any model has a 

direct relationship with the quality of input data. 

Augmenting an exist- ing dataset with proper instances 

of the domain being dealt with, can increase accuracy 

substantially. 

The skewed distribution of image samples for a 

particular infected class may induce bias in feature 

learning and hence, sample datasets require 

augmentation in terms of both quality and quantity. 

Autoencoder approach using Artificial Neural Networks 

(ANNs) can be implemented for augmenting the 

datasets. These models possess the ability to efficiently 

learn the encoding or representation of data in an 

unsupervised fashion. Autoencoders consist of two sub-

models- an encoder and a decoder. The en- coder sub-

model reduces the dimensions of the input image by 

performing compression. This compressed image is then 

passed to the decoder sub-model, which tries to 

reconstruct the original image from the compressed 

representation. Variational Autoencoders can be used as 

potent generative models, owing to the need of the user 

to explore variations in existent data in a specific 

direction, and not entirely randomly. These models can 

all be used to generate new, distinct data from existent 

data, with the required variations needed to be the same 

kind as the previous existent data. This effectively leads 

to augmentation of the existing dataset with new, valid 

instances of data. A small dataset can be increased in 

size exponentially without the need for collecting more 

data from external sources. For below implementations, 

simple data augmentation techniques of rotating, 

inverting, sheering has been used, to increase the lesser 

numbered classes. 

For Environmental data, Maximum Temperature, 

Minimum Temperature, Sunshine and Humidity were 

averaged and Rainfall and Total Beetles were summed 

over a period of seven days and outliers were removed. 

The number of total beetles was normalized for all years 

to maintain the scale for Multiple Regression models. 

The data was split into Summer season and Winter 

season for better modelling. Multi-variable Non-linear 

Regression mod- els were built using the first five years 

of data and the last two years’ data was used for 

checking model accuracy. Non-Linear regression was 

used as statistical tests showed that linear regression 

will not able to model the weather trends properly. 
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Figure 1. System Design 

3.3 Methodology 

 

3.3.1 Image Processing The dataset used for training 

and testing of all our models was given to us by the Coffee 

Board of India, which comprises 2425 images of healthy, 

infested and dis- carded (dead) crops directly from coffee 

plantations, and not in controlled lab environments. These 

wild raw geo-tagged images were given as input, and 

processing of images was done to enhance the quality of 

the input. ImgProc techniques used include contrast 

enhancement, background removal, denoising, edge 

detection, texture-based clustering and filtering. 

Experimentation was done to implement these techniques 

Artificial Neural Net- works, which yielded better results 

when compared to brute force feature engineering 

algorithms. Features considered for extraction were 

estimated leaf size, yellowing and wilting stems and 

branches, surrounding foliage cover, and holes, ridges or 

cracks on the stem. 

 

 

Figure 2. Healthy Plants. Image is prominently filled with 

white leaf shaped patches 

Enhancing contrast, converting into grey scale, performing 

Otsu’s line segmentation, thresholding, Healthy plants 

exhibit prominent leaf size and more foliage cover. 

Unhealthy plants show lesser foliage. Converting to 

greyscale is advantageous in highlighting morphology but 

at the risk of losing subtle color variations (Fig 3, Fig 4). 

Intuition suggests abundance of green and brown in all 

class of images may trick DL models, and decrease 

prediction accuracy, but subtle colour variations are picked 

up very well during feature extraction in deep models and 

thus aids better learning. Since previous methods involve 

converting images to grey scale, to retain color enhancing 

contrast, k-means clustering to find dominant color (Fig 4), 

thresholding specific colors has been applied to achieve 

segmentation. Thresholding dark brown and shadow colors 

after clustering, to achieve segmentation. (Fig 5, Fig 6) 

 

 

Figure 3. Unhealthy plant. Observable shrunken leaf 

size and reduced foliage cover. Image is prominently 

filled with black patches and shadows 
 

 
Figure 4. Brighter shades of Light Green for Healthy 

plants, Deeper shades of Brown and Dark Green for 

Unhealthy plants. 

 

 

Figure 5. Healthy plants show bushy green stems and 

berries. 

 

Figure 6. Unhealthy plants show prominent yellowing 

stems and leaner foliage. 

 
3.3.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are DL models 

which possess the ability to extract image features from 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W6, 2019 
ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”, 18–20 February 2019, New Delhi, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W6-443-2019 | © Authors 2019. CC BY 4.0 License.

 
445



input data, without the need for feature engineering. Since 

there is no need for feature engineer- ing, CNNs are 

extremely adept at handling highly complex and 

convoluted features, thereby making them extremely 

capable im- age classifiers. Deep Convolutional Neural 

Networks (DCNNs) are CNNs with a large number of 

convolutional layers. These multiple layers are trained to 

work together to construct a vast and complex feature 

space. The complexity of features learnt in- creases on 

traversal of the network, which means that lower order 

features like blob or edge detection are learnt at the initial 

few lay- ers, and higher order features are progressively 

learnt over other layers. The final layer features are fed into 

the classifier, which may consist of one or more layers. 
 

 

Figure 7. Convolutional Neural Network Architecture 

As it can be observed from Figure 7, a CNN model 

comprises layers which apply local filters, and these filters 

are stacked in a particular order. 

Convolution: Each convolutional layer has a filter, which 

is a rectangular matrix of values. If the image matrix is 

larger than the filter, the filter slides over sections of the 

image matrix, each time producing a new pixel value. The 

weights for the convolutional layer are the same for each 

neuron present in the layer, and these weights indicate the 

convolutional channel. 

 

Figure 8. Convolution 

Pooling: The pooling layer performs non-linear down 

sampling of data. It partitions the data into multiple non-

overlapping blocks or rectangles and outputs the maximum 

value in each block. The driving idea is that the exact 

location of a feature in the matrix is not as important as its 

location relative to other features. These layers perform 

dimensionality reduction by reducing the number of 

parameters to be considered, thereby decreasing 

computational requirements. These also help in controlling 

over-fitting of data, which is why these layers are usually 

present in between successive convolutional layers. 

 

Fully Connected: These layers are usually present at the 

end of the network-after multiple convolutional and 

pooling layers. A fully connected layer forms connections 

between all of its neurons, and all neurons of the previous 

network. High level feature extraction and reasoning 

occurs in these layers. 

 

 

Figure 9. Pooling 

3.3.3 Transfer Learning The complexity of 

detection of pest infestation can handled by DL 

techniques, namely Convolutional Neural Networks 

(CNNs). However, the overhead of model train- ing time 

increases exponentially with increase in the dataset size, 

leading to the requirement of a faster solution. TL 

utilizes the complexity of DL without the overhead of 

training time. A Deep Convolutional Neural Network is 

pre-trained on a very large dataset, and the weights from 

this model are used either as initialization   or for fixed 

feature extraction based on the requirement. This 

discards the need to train the entire model from scratch, 

thereby making prototyping and deployment much 

faster. Google’s Inception v3 model was used to 

implement TL. 

3.3.4 Convolutional Neural Network with 

Transfer Learning The features extracted and learnt by 

CNNs on a particular source can be transferred to 

augment learning features of another distinct, but related 

target. Low level features can be transferred to the target 

for learning new complex features in the target do- 

main, but this is applicable only if there is sufficient 

data avail- able. In the absence of sufficient data, the 

task of learning high level features for the target domain 

becomes more difficult. How- ever, if there is a 

significant similarity between source and target 

domains, TF can be applied to use the feature space 

generated for the source domain to learn complex 

features in the target domain. 

3.3.5 Inception v3 model GoogleNet, also known as 

Inception v3, is one of the most robust Deep 

Convolutional Neural Network (DCNN) models 

designed to date. The principal focus of this model is to 

create a good local network topology, and then stack 

these topologies one above another to create a complex 

network of networks.  The model has 22 layers and each 

layer   is a Convolutional Neural Network called an 

Inception module. This extremely complex architecture 

is capable of identifying extremely intricate details in 

input data. A pre-trained Inception v3 model was used to 

classify our image input, only by retraining the final 

classifier layer on our input data. The idea of avoiding 

training all layers from scratch and simply retraining the 

final layer exponentially reduced training time. 

 

Figure 10. GoogleNet Architecture 
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3.3.6 Multi-Variable Non-Linear Regression Non-

Linear Regression is a regression model in which the 

dependent variable is modelled by a function which is a 

non-linear combination of the model parameters and one or 

more dependent variables. LASSO regularization was used 

to improve model accuracy. It performs variable selection 

(setting the coefficient of non-contributing variables to 0) 

and performs regularization to improve prediction ac- 

curacy and improve the interpretability of the model. 

3.3.7 Support Vector Regression Support Vector 

Machines (SVMs) can also be used as a regression method. 

A linear learning machine learns a non-linear function by 

the learning machine being mapped into a high dimensional 

kernel induced feature space. Support Vector Regression 

(SVR) is the regression algorithm. The value of the 

parameter C determines the margin size. A larger C results 

in a smaller margin and vice versa. It is chosen in a way 

that it minimizes the misclassification rate of the model on 

testing data. 

3.3.8 Kernel Ridge Regression Kernel ridge regression 

(KRR) combines Ridge Regression (l2-norm regularized 

linear least squares) with the kernel trick. It thus learns a 

linear function in the space induced by the respective 

kernel and the data. For non-linear 

kernels, this corresponds to a non-linear function in the 

original space. The form of the model learned by KRR (loss 

function: squared error loss, combined with l2 

regularization) is identical to support vector regression 

(SVR) (loss function: insensitive loss, combined with l2 

regularization). 

 

3.4 Implementation 

 
The Inception v3 model has been used as it was designed 

to per- form image classification on our image datasets. 

The entire 22-layer model was trained with the values of 

weights being learnt from scratch. Due to the extreme 

complexity of this model, training time was exponentially 

higher than TL. For from-scratch, the Inception v3 model 

achieved a final training and validation accuracies achieved 

were higher at 87% and 75% respectively for 296 epochs 

using the Adam optimizer with a learning rate of 0.001. 

Fine-tuning the model and tweaking hyper-parameters like 

learn- ing rate, optimizer used, batch size and activation 

functions was found to increase overall validation accuracy 

by 23.7 initially. 

 

For transfer learning approach, the same Inception v3 

model architecture is used. The pre-trained model classifies 

the Imagenet dataset, a huge generalized group of over 

2000 classes. In general, when approaching TL, we first 

need to compare the similarity in the dataset and the 

similarity in the model outputs. Since the WSB plant dataset 

is very specific and not as generalized as Ima- genet, the 

model might require extensive retraining to understand and 

extract both, high level and low-level features during 

training. The default number of output classes is over 2000, 

the top classification layer is popped off, and a new softmax 

classification layer of 4 classes is reattached. This change 

in the architecture can be considered as drastic, and thus we 

presumed that the training re- quired a few layers of the 

model to be made trainable. We froze the initial layers and 

made the last 7 trainable. We experimented with multiple 

optimizers and loss functions, such as categorical cross-

entropy, MSE, SGD and Adam, to name a few. 

Categorical cross-entropy, Adam optimizer and a 0.2 

dropout resulted in the best predictions. 

 

Observing the performance of supervised training 

models and limitations in interpreting the final 

predictions (it offers only discrete classes instead of 

intuitive continuous predictions which can be 

extrapolated) (Fig 13,14,15), we aimed at developing a 

more balanced solution, by using unsupervised feature 

learning. Even though the dataset is exhaustive and 

classified, we considered learning the images without 

relying on the labels, through unsupervised learning. 

Autoencoders, unlike supervised models, the output is 

the same as the input, and the model focuses on learning 

features from the images to achieve maximum 

reconstruction ac- curacy. As features are extracted in 

each layer, from input images to produce the same 

images as output, the model learns to rep- resent the 

same data in multiple ways, and is unbiased by input 

labels, unlike supervised feature learning, as 

reconstruction loss is used to increase accuracy during 

back-propagation instead of classification loss. 

 

We built a CNN-based autoencoder with symmetric 

stacking of filter layers (16,8,4,8,16), with 

Reluactivation and uniform padding for each layer. The 

output layer has sigmoid activation, and the whole 

model is compiled with adam optimizer and categorical 

cross-entropy as the loss function. SGD and categorical 

cross- entropy performed equally. 

Using the features extracted by the autoencoder, we 

train a classifier ANN. Combining the predictions of 

both approaches, we 

can expect a better overall unbiased output. We pop off 

the de- coder of the autoencoder, and get the extracted 

features from the encoder layers. Feeding in the 

encodings of each input image and its respective label, to 

train the ANN. 

The ANN is fully connected with 2 layers (8,4) of 

Reluactivations, and a softmax output layer. A global 

average 2D pooling layer is used on the flattened input 

encodings. Compilation is done using Adam optimizer 

and Categorical cross-entropy. 

For Environmental Data models, Maximum 

Temperature, Mini- mum Temperature, Sunshine, 

Rainfall and Humidity were used as the 

independent/predictor variables and Total Beetles was 

the dependent variable. The models were trained on first 

five years of data (1999-2004) and tested on the last two 

years of data (2005- 2006) for both Summer and Winter. 

Root Mean Squared Error (rmse) was used as the model 

accuracy metric. 

The degree of the Non-Linear Regression Model was 

chosen as 2 for it to be able to model the variance in the 

dependent variable properly. Another Non-Linear 

Regression Model was trained with the same degree and 

LASSO regularization was used to improve the model 
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performance and improve the prediction accu- racy. 

The Support Vector Regression models for both Summer 

and Winter were trained using the Radial Basis Function 

(rbf) kernel with the C value set as 100 so that the model 

can learn and adapt to the higher beetle emergence values. 

The Kernel Ridge Regression models for both Summer and 

Winter were trained using the Radial Bias Function (rbf) 

kernel. The L2 norm term in ridge regression is weighted 

by the regularization parameter alpha. Larger the alpha 

value, the smoothness constraint will be higher. Lower the 

alpha value, the model is closer to becoming just a plain 

Least Squares Regression Model. A large value of alpha 

would lead to a stricter fit and a small value of alpha would 

lead to a high value of coefficients. The alpha value was set 

to 0.1 for both Summer and Winter models. 

 
4. RESULTS AND DISCUSSION 

 
4.1 Results on Image Data 

 
Using TF for supervised learning, the highest accuracy 

attainable was 87% in 60 epochs, for 512x512 input image 

sizes. Further training and tweaking, resulted in a drop of 

accuracy, as the model tends to overfit on the training 

data.(Fig 11) 
 

Epochs Image Size Accuracy 

80 256 x 256 0.55 

120 256 x 256 0.68 

30 512 x 512 0.72 

60 512 x 512 0.84 

Figure 11. Accuracies of Transfer Learning on Raw images 

 
We approximate, the model will perform better for higher 

resolu- tions images. On processed images, the model 

achieves accuracy faster than on raw images, but stagnates 

later (Fig 12). About 250 raw images were taken from each 

class and converted to pro- cessed images for training and 

testing (1000 images in total). We approximate the model 

will gain much higher accuracy if more processed images 

are used. 

Epochs Image Size Accuracy 

50 256 x 256 0.61 

100 256 x 256 0.72 

40 512 x 512 0.77 

60 512 x 512 0.87 

Figure 12. Accuracies of Transfer Learning on Processed 

images 

 
 
Figure 13. Ranked Stage Predictions on Raw Images 

 

Figure 14. Ranked Predictions on Raw Images. False 

predictions give hints on how the features extracted by 

the model, from the image, correlate to other classes, 

even pick out false labels. Such intuitions can be 

extrapolated and correlated. 

 

Figure 15. Ranked Stage Predictions on Processed 

Images 
True/Predicted Stage 

1 
Stage 

2 
Stage 

3 
Stage 

4 
Stage 1 20 0 0 0 
Stage 2 0 82 2 2 
Stage 3 0 0 12 0 
Stage 4 2 2 52 26 

Figure 16. Confusion Matrix of 200 Raw Images, of 

84% TF model 

Based on the similar results on both raw and processed 
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images, we conclude that our solution works well on raw 

images equally and thus can get predictions faster during 

real-time usage, as no image processing needs to be done 

once the images are captured. 

Using the CNN-based autoencoder, the highest 

reconstruction ac- curacy attainable was 93% in 60 epochs 

(for 512x512) and 50 epochs (for 256x256) input image 

sizes, both raw and processed. Using CNN-based layers, 

ensure shift invariance and low overfit- ting. Using pure 

layers might have given better accuracy, but at the risk of 

overfitting. (Fig 17) 

 

Figure 17. Reconstruction of Raw Images using 

Autoencoder 

Using ANNs as the final classifier, the highest accuracy 

attain- able was 75% in 80 epochs, for 512x512 input 

image encodings. Further training and tweaking, resulted in 

stagnation. (Fig 18) 
 

Model Combination Image Size Raw Processed 

AED + ANN classifier 256 x 256 0.68 0.72 

AED + ANN classifier 512 x 512 0.72 0.75 

 

Figure 18. Accuracies of training ANNs on AutoEncoder 

Encodings 

4.2 Results of Environmental Data 

 
Among the Non-Linear Regression models, the model with 

Lasso Regularization performed better for Summer Data as 

the normal model was overfitting a lot. For Winter data, 

neither of the models could show satisfactory performance 

(Fig 19). 
 

Model Summer Winter 

NLRa 99.601 111.311 

NLR(LR)b 104.495 119.065 

SVRc 111.786 110.634 

KRRd 131.459 131.049 
aNLR = Non-Linear Regression 
bNLR (LR) = Non-Linear Regression with Lasso 

Regression 
cSVR = Support Vector Regression 
dKRR = Kernel Ridge Regression 

 

Figure 19. Results (RMSE) of Environmental Data Models 

The Kernel Ridge Regression (KRR) models were also 

either overfitting or not capturing any trend at all. The 

KRR model for Summer was relatively better than all the 

other models trained on 

 

Summer data as it was best able to capture the pattern for 

beetle emergence. (Fig 20) 

 
 

Figure 20. KRR Model predictions for Summer 2005 

and 2006  

The Support Vector Regression (SVR) models were 

also either overfitting or not capturing any trend at all. 

The SVR model trained on Summer data did manage to 

capture the beetle emergence pattern to some extent. 

The SVR model for Winter data was relatively better 

than all other models trained on Winter data as it was 

best able to capture the pattern for beetle emergence. 

(Fig 21) 

 
 

Figure 21. SVR Model predictions for Summer 2005 

and 2006  

Although RMSE values for any of the models are not 

good enough for the models to be taken as robust 

statistical models. But seeing their performance with less 

data and the fact that some models are able to capture the 

pattern of beetle emergence to some extent, we 

approximate, the models will work well with larger 

amounts of data 

 
5. FEASIBILITY AND LIMITATIONS 

As an insight, we advocate that laboratory tests are 

ultimately always more reliable than diagnoses based on 

visual symptoms alone, and oftentimes early-stage 

diagnosis via visual inspection alone is always 

challenging. Our solution revolves around 2 types of 

data, images and weather data, and we chose DL 

approaches for both. In order to develop accurate image 

classifiers for the purposes of diagnosis, we needed a 

large, verified dataset of images of infested and healthy 

plants. For similar diagnosis problems on other datasets, 

particularly smaller datasets, we estimate that the same 

solutions would work efficiently, but with customization 

and experimentation on epochs and classifier tweaking. 
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Further, most previously implemented approaches depended 

on plant datasets which were collected in a controlled 

environment (lab environments, with standard lighting and 

acquisition parameters), our solution is built to work on 

both controlled and uncontrolled image acquisition 

scenarios. Additionally, it is important to note that although 

training large neural networks can be very time- 

consuming, the trained models can classify images very 

quickly, which makes them also suitable for consumer 

applications on smartphones. Supplemented with location 

and time information for additional improvements in 

accuracy, these DL models can be easily deployed in 

smartphones, unlike computation-heavy and hardware-

heavy solutions such as pure image feature algorithms. 

With ever improving number and quality of sensors on 

mobiles devices, and the ease of scaling models, we 

consider it likely that highly accurate diagnoses via the 

smartphone are only a question of time. The focus of our 

study has been to understand WSB infestation and build a 

model to help detect probable infestation with a well 

defined lead period. However, the scope of our study is not 

absolute. The statistical models built by the analysis of  the 

environmental data of Balehonnur provided did not 

produce results which were conclusive enough to conclude 

that extrapo- lation could be done to larger and more 

number of areas. Such an outcome can partly be attributed 

to the scarcity of data, the data available was not sufficient 

enough to train a robust statisti- cal model. Further research 

must be done to build a sufficiently robust statistical 

model. The dataset was compiled by including images 

captured in a few districts of Karnataka, making it sus- 

ceptible to skewness. Consideration of nature of the 

environment in which these pictures were captured also 

affect implementation methodology. If the environment is 

proven to be deterministi- cally controlled, traditional 

Machine learning techniques can be used to perform feature 

engineering to extract the required fea- tures from the 

images.   Since our dataset was not compiled in   a fully 

controlled environment, feature engineering could not be 

done owing to increased complexity of the features. DL 

tech- niques needed to be implemented to discard tedious 

feature engi- neering.ImgProc techniques like segmentation 

were not applied for symptoms depicted by individual 

parts. The entire plant im- age was considered, making the 

focus on the entire plant rather than on specific parts of the 

plant. 

 
 

6. CONCLUSION 

 
WSB infestation is extremely fatal to the coffee planter’s 

com- munity, and easily poses to be one of the biggest 

threats known to coffee yield. Traditional methods failed 

due to the peculiarity of the infestation and the need for a 

better, automated diagnostic solution was established. 

Previous solutions proposed in this direction were a 

considerable improvement over existing solutions, but these 

solutions still came with some inherent limitations and 

could not solve the problem entirely. Our solution to the 

early detection of pest infestation has been established to 

theoretically overcome the limitations of previous solutions 

by 2 points. The first being it has reliable performance on 

even raw uncontrolled images and the second being, it 

includes external features like environmental data points 

to improve accuracy of prediction and successfully 

determine the probabilistic occurrence of pest infestation 

in the near future with a significant enough lead time. 

How- ever, the scope of our study and feasibility of our 

current solution is limited by the points mentioned in the 

Limitations section. We intend to continue working to 

expand the currently proposed solution to overcome the 

stated limitations and to integrate the statistical model 

along with the ImgProc and DL model to provide a 

concise prediction. 
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