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ABSTRACT: 
 
Crop discrimination and acreage play a vital role in interpreting the cropping pattern, statistics of the produce and market value of 
each product. Sultan Battery is an area where a large amount of irrigated and rainfed paddy crops are grown along with Rubber, 
Arecanut and Coconut. In addition, the northern region of Sultan Battery is covered with evergreen and deciduous forest. In this 
study, the main objective is to evaluate the performance of optical and Synthetic Aperture Radar (SAR)-optical hybrid fusion 
imageries for crop discrimination in Sultan Bathery Taluk of Wayanad district in Kerala. Seven land use classes such as paddy, 
rubber, coconut, deciduous forest, evergreen forest, water bodies and others land use (e.g., built-up, barren etc.) were selected based 
on literature review and local land use classification policy. Both Sentinel-2A (optical) and sentinel-1A (SAR) satellite imageries of 
2017 for Kharif season were used for classification using three machine learning classifiers such as Support Vector Machine (SVM), 
Random Forest (RF) and Classification and Regression Trees (CART). Further, the performance of these techniques was also 
compared in order to select the best classifier. In addition, spectral indices and textural matrices (NDVI, GLCM) were extracted 
from the image and best features were selected using the sequential feature selection approach. Thus, 10-fold cross-validation was 
employed for parameter tuning of such classifiers to select best hyperparameters to improve the classification accuracy. Finally, best 
features, best hyperparameters were used for final classification and accuracy assessment. The results show that SVM outperforms 
the RF and CART and similarly, Optical+SAR datasets outperforms the optical and SAR satellite imageries. This study is very 
supportive for the earth observation scientists to support promising guideline to the agricultural scientist, policy-makers and local 
government for sustainable agriculture practice. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Classification of crop types from the satellite imagery is a 
challenging task because; crops are more related to seasons, 
mixed growing pattern (e.g., mixed farming; sometimes 
boundary of Kharif, Rabi and Zaid season of a particular crop is 
not very clear) and rapid change of cropping pattern                           
(Cai et al., 2018). Mapping crop types is essential in 
agricultural management because it helps the local government 
and policymakers to monitor the crop yield, tracking crop 

rotation cycle, estimating the economic outcome from 
agriculture            (Cai et al., 2018; Song et al., 2017). In 
addition, mapping of crop types also helps for the assessment of 
vulnerability of the crops in case of disasters (Song et al., 
2017).  

Remote sensing acts as an efficient solution for this purpose due 
to the availability of a wide range of satellite imagery products 
with high temporal and spatial resolutions. Studies have 

shown mapping different crops with the use of multispectral 
images (Song et al., 2017; Sonobe et al., 2017). However, the 
usage of multispectral satellite images (e.g., optical) has its own 
limitations due to the atmospheric factors. This can be further 
overcome by taking the aid of microwave remote sensing which 
uses microwave region of the spectrum for collecting data from 
the landscape. As microwave remote sensing has an ability to 
overcome the effects of clouds and can provide cloud-free 
images of the landscape despite the other weather conditions 
too (e.g., rain, haze etc.) (Steele-Dunne et al.,2017). 
Furthermore, others properties of microwave remote sensing 
such as backscatter, surface roughness and dialectic constant of 
the earth’s object are the added advantages over optical remote 
sensing (Engman & Chauhan, 1995; Steele-Dunne et al., 2017). 
With the advancement of image classification techniques, 
selection of best algorithm is very crucial to improve the overall 
classification accuracy. In this regard, machine learning 

algorithm is efficient, fast and robust as compared to parametric 
traditional classifiers (e.g., Maximum Likelihood Classifier) 
(Balzter et al., 2015; Shao & Lunetta, 2012; Mustak, 2018).  

In this study, optical data from Sentinel 2 is used along with 
Sentinel 1A GRDH and SLC data. With the launch of Sentinel-
1A, VV and VH polarization data is available with a revisit 
period of 6 days with a spatial resolution of approximately 20 x 
5 m using the Interferometric Wide Swath mode (IW) which 
was widely used in several studies (e.g.,  Balzter et al., 2015). 
In addition, optical data is further fused with the SAR data 
using image fusion techniques (e.g., High Pass Filter) for 
reducing the impact of the atmosphere and also to increase the 
spatial and spectral resolution for better crop discrimination                    
(Gaetano et al., 2017). The main objective of this paper is to 
evaluate the 
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performance of optical, Synthetic Aperture Radar (SAR) and 
optical-SAR fused imageries for crop discrimination in Sultan 
Bathery Taluk of Wayanad district in Kerala using machine 
learning algorithms. Following crops such as paddy, rubber, 
coconut and Arecanut have considered for the discrimination in 
this study. This paper is structured in following sections such 
as, section 1: described about the overview of the study; section 
2: explained about study area; Section 3: described about 
methodology; section 4: covers results and discussion, 
conclusion and recommendation. At the end of this article list of 
references have presented.  
 

2. STUDY AREA AND DATASETS USED  

2.1 Study area 

The Sultan Bathery region of Wayanad district in the state of 
Kerala, both staple crops such as paddy and cash crops such as 
Coffee, Rubber, Coconut and Arecanut are grown. In this 
region, cash crops play a vital role in the livelihood of the 
people compared to the staple ones. The study area is the part of 
Bathery taluk of Wayanad District in Kerala which is shown in 
figure 1. This area is located in between 7605’E to 76027’ E and 
11034’N to 110 52’N covering with an area of 752 sq. km. The 
region is covered with forests, lakes, reservoir, agricultural 
lands, plantations, and population centres (e.g., settlements). In 
addition, major part of this region is covered by forests which 
divided the region into the eastern and northern sides. In this 
area, five major crops are grown such as paddy, rubber, 
coconut, coffee and Arecanut in which Coffee and Rubber are 
the dominated cash crops. As coffee is grown along with 
rubber, coconut or Arecanut, they are hard to be identified using 
satellite imageries. As per the phenology, paddy is cultivated 
during the Kharif season and is harvested by the end of 
November.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This area is belonging to undulating elevated landscape which 
varies from 700m to 1075m height above mean sea level.  In 
addition, this area is also belongs to rain fed moon climate (Am 
of Koppen scheme) whereas average maximum and minimum 
temperature are 30.100C and 15.600C (annual average 22.50C) 
with annual average rainfall is 2681 mm respectively 
(IMPRINT, 2018). The region experiences three seasons, 
summer (March to May), winter (December to February) and 
monsoon (June and December). The region receives rain from 
both the south-east and north-west monsoon.   
 

2.2 Datasets and software used  

In this study, Sentinel 1A and Sentinel-2A MSI were used. 
Sentinel-1A download from the Alaska Satellite Facility 
(https://www.asf.alaska.edu/) while sentinel-2A MSI using 
google earth engine. The optical data (e.g., Sentinel-2A MSI) is 
consists of thirteen bands while Senetil-1A is single band SAR 
imagery (See table 1, 2 and 3). Out of thirteen bands of 
Sentinel-2A MSI, only ten bands were used ignoring the coastal 
aerosol, water vapour and Cirrus bands as they are mainly used 
for cloud screening and atmospheric correction. Temporal 
resolution of Sentinel 2A is 5 days. The Level-1C data              
(e.g., corrected images) scenes are acquired for the month of 
October and the cloud-free scenes are mosaicked to get the final 
image.  

Secondly, Sentinel-1A (level-1) is a dual-polarization C-band 
(central frequency of 5.405 GHz) Synthetic Aperture Radar 
(SAR). This comprises of SLC (Single Look Complex) and 
GRD (Ground Range Detected) in both VV and VH 
polarization. The GRD data has the amplitude data while the 
SLC data is complex number preserving the phase information. 
SAR data is acquired by Interferometric Wide Swath mode and 
its temporal resolution is 12 days. The SLC data was used along 
with GRD to take the advantages of polarimetric decomposition 
to improve the classification accuracy.  
 

Acquisition 
date 

Data Set Sensor Source 

25th October 
2017 

 SAR 
GRDH &  

SLC 

Sentinel 
1A 

Alaska 
Satellite 
Facility 

October 2017 Optical  Sentinel 
2A 

Copernicus 
Open Access 

Hub  

February 2000 DEM SRTM USGS Earth 
Explorer 

26th October 
2018 
and  

2005-2006 

Field Data, 
Bhuvan 
LULC, 
Local 

Knowledge 

- Bhuvan.nrsc.
gov.in 

Table 1. Datasets used 

Band name 
Resolution 

(m) 

Central 
wavelen

gth 
(nm) 

Band 
width 
(nm) 

B01(Coastal Aerosol) 60 443 20 

B02(Blue) 10 490 65 

B03(Green) 10 560 35 

B04(Red) 10 665 30 

B05(Vegetation Red Edge) 20 705 15 

B06(Vegetation Red Edge) 20 740 15 

B07(Vegetation Red Edge) 20 783 20 

B08(Near infrared) 10 842 115 

B08A(Vegetation Red Edge) 20 865 20 

Figure 1. Location of study area 
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B09(Water vapour) 60 945 20 

B10(Cirrus) 60 1375 30 

B11(SWIR) 20 1610 90 

B12(SWIR) 20 2190 180 
Table 2. Radiometric details of Sentinel-2A 

 
Band 
name Polarization 

Resolution 
(m) 

Range 
(nm) 

Band width 
(nm) 

 C - Band VH 10 1530-
1565 

35 

 C - Band VV 10 1530-
1565 

35 

Table 3. Radiometric details of Sentinel-1A 
 
This study was carried using SNAP, Erdas Imagine (2014), 
ArcGIS 10.6.1 and google earth engine. 
 

3. METHODOLOGY  

The main objective of this paper is to evaluate the performance 
of optical, Synthetic Aperture Radar (SAR) and optical-SAR 
fused imageries for crop discrimination in Sultan Bathery Taluk 
of Wayanad district in Kerala using machine learning 
algorithms. Based on the main objectives following methods 
have been employed in this study.  
 
3.1 Crop Phenology   

Phenology refers to the study of life cycle of crop growth stages 
from sowing to harvest. Phenology helps to understand the time 
to irrigate, time to apply fertilizers, growth stages and 
evaluating the productivity of the crop etc. (You et al., 2013). In 
this study area, paddy, rubber, coconut and Arecanut are the 
grown. In addition, this is further helped us to identify the 
month which consists of all crops grown moderately or fully. 
Paddy is grown during both Rabi and summer seasons. During 
Rabi season paddy is sown in June and harvested in November 
or December. Thus, Coconut and Arecanut remains throughout 
the year. Rubber remains throughout year and sheds its leaves 
during late December and early January. In this study, both 
optical and SAR imagery of October was used because all three 
crops (e.g., Paddy, Coconut/ Arecanut, Rubber) are fully grown 
during this month. 
 
3.2 Agricultural land use/cover classification scheme  

In this study, seven land use/cover classes were selected for the 
classification based on literature review, local and national land 
use/cover classification scheme and land use management 
policy.  Detailed of the selected land use/cover classes have 
explained in table 4. 
 

Lulc 
code 

Classes Description 

1 Paddy Paddy fields and Paddy Cultivation 
2 Water Body Lakes, Rivers and Reservoir 
3 Forest Evergreen Forest and Dry 

Deciduous Forest 
4 Built Up Urban areas and Semi urban areas 
5 Rubber Rubber plantation 
6 Arecanut Arecanut and Coconut plantation  

7 Barren land Empty vacant land 
Table 4. Land Use Land Cover Classification scheme 

 
3.3 Pre-processing 

The pre-processing generally includes radiometric and 
geometric correction, subsetting, mosaic and enhancement 
(Mustak, 2013) but in SAR, there are several others pre-
processing were carried out (e.g., speckle reduction, calibration, 
terrain correction etc.) (See figure 2). The Sentinel-1A Ground 
range detected data which has terrain corrected gamma naught 
(γ 0) backscatter values as the final output after processing    
(see figure 2A) which termed as intensity image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, other pre-processing steps were used applying the 
orbit file which provides accurate satellite position and velocity 
information followed by thermal noise removal. Thus, the 
radiometric calibration was done to get beta naught (β0) which 
was further used for terrain correction (Small et al.,, 2012). This 
is then followed by subsetting the image to the selected study 
area and then used Refined Lee filter to reduce the speckles 
presence in the image.  Furthermore, speckles corrected image 
was used for terrain flattening and terrain correction using the 
SRTM digital elevation model for correction topographic 
effects on image. 

To enhance the overall classification of crops types using SAR 
data, Single look complex (SLC) data instead of GRD data was 
used to derive dual-pol polarimetric decomposition. 
Polarimetric decomposition provides added information of earth 
objects such as Volume scattering, surface scattering and 
double bounce which helps in the efficiently distinguishing 
detailed crops types. Figure (2B) shows the pre-processing of 
SLC data. In this study, we have used Dual Pole H- αangle 
polarimetric decomposition to obtain following decomposition 
indices such as Entropy (H), alpha angle (α) and anisotropy (A). 
Entropy indicates the statistical randomness of the scattering 
while. Alpha angle indicates the average or dominant scattering 
mechanism within a specific target and the value ranges from 0 
to 90 ̊. Anisotropy is the measure of relative importance of 
second and third Eigenvalues and is the complementary 
parameter for entropy (Small et al., 2012).  
In addition, radiometrically (TOA) and geometrically corrected 
Optical data was downloaded using google earth engine. Thus, 
others processing like sub setting, mosaicking of optical data 
was also done using median reducer using google earth engine. 
This is because median best representation the central tendency 

(A)                                    (B) 

Figure 2.  Pre-processing of Sentinel-1A, (A) GRD 
data; (B) SLC data 
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of the datasets instead of the others statistical measurement 
(e.g., mean, mode) (Kelley et al., 2018). 
 
3.4 Collection of training and test Samples 

In this study, training and test samples were randomly collected 
from the several sources such as Bhuvan land use/cover 2011-
2012 (on 1:50,000 scale) using geo-web services 
(https://bhuvan-app1.nrsc.gov.in/thematic/ thematic/index.php), 
local knowledge and other ancillary datasets (e.g., article, 
research papers etc.). Adding to this local knowledge of the 
study area such as types of crop grown, crop growing period, 
types of urban settlement etc. are added advantages over 
traditional efforts to collect efficient and robust training and test 
samples. The training samples were collected from the 
aforementioned reference datasets using minimum 50 sample 
rule (e.g., minimum 50 training samples per class) using 
stratified random sampling because this strategy is more robust 
as compared others sampling techniques  (Foody, 2009). In 
addition, stratified random sampling was employed to collect 
adequate test samples per class for efficient accuracy 
assessment.  In some cases, (e.g., parameter tuning), training 
samples were splitting into training and validation set using 
60:40 rules (e.g., 60% training and 40% validation).  
 
3.5 Image Classification 

Image classification was carried using following sub-processes: 
 
3.5.1 Selected Machine Learning algorithms: Machine 
learning algorithm (MLA) is robust and increasingly used non-
linear statistical learning algorithms for multiclass problems. 
Initially, MLA was introduced in computer science for pattern 
recognition, computer vision  but recently widely used in land 
use/cover classification from the satellite imagery  (Kelley et 
al., 2018; Tsai et al., 2018). Recently, MLA in google earth 
engine widely used for land use/cover classification from 
satellite imagery because of its fast and efficient computation 
performance using high dimensional feature space (e.g., more 
related to big data) (Tsai et al., 2018). In google earth engine 
(GEE), three major supervised MLA are integrated such as 
Classification and Regression Tree (CART), Random Forest 
(RF) and Support Vector Machine (SVM) which were selected 
to explore their performance in crop discrimination. 

In this study, pixel-based classification approach was employed 
using these MLA. In machine learning, SVM is one of the 
robust and widely used algorithms ensembles with several 
kernel functions (e.g., linear, polynomial, radial basis function 
etc.) in which radial basis function (RBF) is more robust as 
compared to others (Shi & Yang, 2015; Tang et al., 2012). 
SVM-RBF has two important hyperparameters such as cost and 
gamma which affects the performance of the classifier and 
overall classification accuracy based on optimum hyperplane                    
(Szuster et al., 2011). The cost explained the penalty over slack 
variables and more related to margin maximization while 
gamma explained the bandwidth of the RBF kernel (Mustak, 
2018; Qian et al., 2014). Higher value of cost more the penalty 
over slack variables and similarly higher the value of gamma 
more is biases and lesser the variance and vices versa (Mustak, 
2018; Qian et al., 2014). Generally, the range of cost is 101 to 
102 and gamma is 10-2 to 102 was selected in many studies for 
tuning hyperparameters of SVM-RBF (e.g., Mustak, 2018). 

CART is a decision tree algorithm, which was initially used for 
data mining and forecasting (Adam et al., 2014). CART is also 
termed as binary decision tree which splits the training input 

(e.g., parents node) into different decision nodes                  
(e.g., child, internal etc.) to obtain final leaf nods (e.g., external 
node, terminal, final class) based on the voting, splitting and 
logical inferences (e.g., If-else-than, pruning etc.) (Oliveira et 
al., 2017; Laliberte & Rango, 2009). Splitting point in the 
decision tree is termed as root node (e.g., child node) which is 
assigned to a predicted class based on the distribution of 
classes. The root node is a series of internal nodes and terminal 
nodes. Each internal node consists of parent node and two or 
more child nodes. Based on the rules or the cost function, child 
node continues to split with the aid of regression until a leaf 
node is created (e.g., final predicted class) (Shi & Yang, 2015). 
Parameter tuning (e.g., splitting rule, depth of tree etc.) in 
CART sometimes improved the overall classification accuracy 
in some context but readymade parameters used in CART as 
provided by GEE commonly performs higher classification 
accuracy in many cases. 

Random forest (RF) is another important robust MLA 
configured tree-like which ensemble with several decision trees                        
(Sun et al., 2016). Random forest creates several binary trees 
(ntree) using bootstraps sampling (sometimes called out-of-bag 
samples) which drawn from the number of training samples 
(mtry) randomly assigned in each node (e.g., child node). Final 
predicted class was obtained based on the maximum vote 
assigned in each class drawn from the deep ensemble decision 
tree (Adam et al., 2014; Sun et al., 2016). The overfitting of the 
RF mostly affected by the size of binary tree (ntree) instead of 
number of training samples assigned in each child node. Hence, 
tuning on size of tree (ntree) in RF was commonly used to 
reduce the overfitting and improve the overall classification 
accuracy because default value of mtry provided optimum 
result  (Adam et al., 2014; Thanh Noi & Kappas, 2017; Sun et 
al., 2016). 
3.5.2 Features extraction and normalization: In this study, 
several image features such as spectral (e.g., image bands, 
NDVI, DEM), texture (e.g., GLCM) and contextual features 
(e.g., entropy, alpha angle and anisotropy) were extracted using 
GEE and SNAP.  
• Image bands includes the spectral bands of Sential-2A 

(e.g., green, NIR etc.) and Sentinel-1A (e.g., VV, VH).  
• Normalized Difference Vegetation Index (NDVI) is a 

robust spectral feature which is the added advantage over 
spectral bands to improve the overall classification 
accuracy. Because, it is very efficient to differentiate 
between vegetation area from the non-vegetated area 
(Julien et al., 2011; You et al., 2013). NDVI was computed 
using equation 1: 
 

 
 
 An NDVI value varies from +1 to -1. NDVI value +1 

explained the area having high vegetated area while NDVI 
value -1 explained the area with highly covers with non-
vegetated area. 

• Digital Elevation Model (DEM) is one of the important 
spectral features widely used in image classification. DEM 
used in the image classification especially in elevated 
landscape is the added advantage over other spectral 
features to improve the overall classification accuracy. 
This is because, in the undulating elevated landscape, 
distribution of land use varies with the height variation 
(Bahadur et al., 2009). 

• Grey level Co-occurrence Matrix (GLCM) is a classical 
method for the extraction of texture feature from the 
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image. In this study, GLCM mean was selected because of 
the robustness and widely used in many studies                
(Gevaert, et al., 2016; Ma et al., 2015). The GLCM mean 
was computed in all direction with the filter size 4 using 
GEE. GLCM mean features were extracted for all bands of 
optical image. 

• Contextual image features such as entropy (H), alpha 
angle (α) and anisotropy (A) were extracted from the SAR 
using SNAP to improve the classification accuracy. 
Entropy indicates statistical randomness of the scatters and 
its value varies from 0 to 1. Entropy value 0 value 
indicates a single scattering while 1 indicates a mixture of 
scattering mechanism (Avtar et al., 2013). Alpha angle is 
another contextual feature computed using Eigen vectors. 
This is an indicative of average or dominant scattering 
mechanism of a specific target. The value of Alpha angle 
varies from 0 to 90 degree. Alpha angle value 0° indicates 
odd bounce scattering from flat surfaces (e.g., 
waterbodies), value close to 45° represents dipole or 
volume scattering (e.g., forest, plantation etc.) while values 
close to 90° indicates double bounce scattering (e.g., built-
up etc.) (Avtar et al., 2013). Anisotropy represents 2nd and 
3rd Eigen values using Eigen decomposition. It is 
complementary parameter of entropy.  It is useful when H 
> 0.7 (Avtar et al., 2013). 

• Fused image features such as optical image bands were 
merged with SAR (VV, VH) using High Pass Filter merge 
(HPF) in Erdas Imagine 2014. Fusion of SAR with optical 
image was widely used in many studies for land use/cover 
classification because of the enhancement of spectral and 
spatial resolution, and reduction of speckle effects                
(Mishra & Susaki, 2014). 

The above extracted image features were resampled to 10 m 
using nearest neighbour resampling method. In addition, final 
image features were normalized using equation 2:  
 

  
 
3.5.3 Features selection and parameter tuning: Feature 
selection is a very important consideration in image 
classification to reduce the effects of Hughes Phenomena and 
improve the overall classification accuracy (Pal & Mather, 
2004). It is also very important measures for class separability 
analysis. There are several feature selection methods such as 
principle component analysis (PCA), rank, and correlation etc. 
but sequential feature selection (SFS) method is robust and 
widely used (Mustak, 2018; Pal & Mather, 2004). In addition, 
spectral plot was generated to visually inspect the class 
separability. In this study, SFS and spectral plot were used for 
feature selection. In addition, SVM-RBF (with default 
parameters) was used for evaluating accuracy of the different 
sets of image features using 60 % training and 40% validation 
samples.  
Beyond the feature selection, parameter tuning is another 
important attention to reduce the overfitting of the classifiers to 
improve the overall classification accuracy (Qian et al., 2014). 
In this study, holdout grid search 10-fold cross-validation was 
used for tuning the best cost and gamma of SVM-RBF using 
cost range 101 to 5×102 and gamma range 10-1 to 102. Thus, 10-
fold cross-validation was employed to select best ntree for RF 
using range 10 to 500 ntree. In addition, default parameters of 
CART were used for the classification. In parameter tuning 60 
percent training samples were used training and 40 percent for 
validation. 

3.5.4 Land use/cover classification and accuracy 
assessment: To classify the selected land use/cover, best 
features and parameters were used in SVM-RBF, RF and CART   
(also evaluated for other feature sets). In this classification, full 
training samples were used to train the classifiers while full test 
samples were used for final overall accuracy assessments. The 
overall accuracy was computed by dividing the sum of the 
diagonal values with the total values (e.g., sum of row and 
column) of the confusion matrix generated by classified and 
 referenced land use classes. 
 

4. RESULTS AND DISCUSSIONS 

Results have been presented in the following sub-section using 
aforementioned methods to address the important research 
objectives: 
 
4.1 Training and test samples  

Based on the strategy employed for selecting training and test 
samples (see section 3.5.2) have been presented in the table 5. 
Total 2281 training samples were used to train the classifiers 
while 1239 test samples were used for final overall accuracy. 
 

Classes Training data 
(Pixels) 

Testing data 
(Pixels) 

Paddy 295 202 
Water Body 338 176 

Forest 299 180 
Built Up 374 161 
Rubber 322 177 

Arecanut 311 149 
Barren land 342 194 

Total  2281 1239 
Table 5. Statistics of training and testing data 

 
4.2 Extracted and normalized image features  

Table 6 shows the extracted and normalized features used for 
the crops discrimination using strategy made in section 3.5.2. 
These images features were further used the features selection 
to measure the class separability for improving the 
classification accuracy.  
 

Image 
features 

Name of features Number 

Spectral   Sentinal-2A 
bands- 

B2, B3, B4, B5, B6, B7, B8, 
B8A, B11 and B12 

10 

 Sentinel-1A- 
VV, VH 02 

 NDVI 01 
 DEM 01 

Texture  GLCM mean of B2, B3, B4, 
B5, B6, B7, B8, B8A, B11 
and B12 

10 

Contextual  Polarimetric decomposition 
indices such as entropy (H), 
alpha angle (α) and anisotropy 
(A) 

03 

Fused 
features 

Optical+SAR VV 10 
Optical+SAR VH 10 

Total features 47 
Table 6. Extracted and normalized image features. 
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4.3 Selected best Features  

Based on the strategy adopted for selecting best images features 
in the section 3.5.3, results have been presented in the table 7 
and figure 3. Figure 3 shows that spectral reflectance of 
different land use/cover are varying with the different types of 
image features. In addition, table 7 shows that how overall 
classification accuracy is varying with the different sets of 
image features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Features set Name of features 
Overall 

classification 
accuracy 

Optical data Sentinel-2A : B2, B3, 
B4, 
B5,B6,B7,B8,B8A,B11 
and B12), GLCM of all 
these bands, NDVI and 
DEM 

98.45% 

SAR data Sentinel 1A (VH, VV) 
and entropy (H), alpha 
angle (α) and anisotropy 
(A) 

54.55% 

Optical  +  
SAR 

Sentinel 2A: B2, B3, B4, 
B5,B6,B7,B8,B8A,B11 
and B12), GLCM of all 
these bands, NDVI and 
DEM , SAR-VV, VH, 
entropy (H), alpha angle 
(α) and anisotropy (A) 

98.96% 

Fused VH + 
others 
features  
(spectral, 
texture, 
contextual) 

Fused Sentinel VH 
polarisation and optical 
imagery (B2, B3, B4, 
B5,B6,B7,B8,B8A,B11 
and B12) , GLCM of all 
these bands, NDVI and 
DEM , entropy (H), 
alpha angle (α) and 
anisotropy (A) 

98.36% 

Fused VV + 
others 
features  
(spectral, 
texture, 
contextual) 

Fused Sentinel VV 
polarisation and optical 
imagery (B2, B3, B4, 
B5,B6,B7,B8,B8A,B11 
and B12), GLCM of all 
these bands, NDVI and 
DEM , entropy (H), 
alpha angle (α) and 
anisotropy (A) 

98.20% 

Table 7. Evaluating best image features   

The results show that optical and SAR along with others 
textural and contextual image features provided higher overall 
accuracy (98.96%) as compared to others sets of image features. 
This is because, others advantages of SAR such as backscatter, 
surface roughness and dialectic constant, entropy (H), alpha 
angle (α) and anisotropy (A) are the added contribution over the 
combination of optical images, NDVI and DEM for the 
improvement of overall classification accuracy (on 40% 
validation samples). These best image features have been used 
for parameter tuning, final land use/cover classification and 
overall accuracy assessment using selected machine learning 
algorithms.  
 
4.4 Selected best Parameters  

Using parameter tuning strategy as adopted in section 3.53, the 
best ntree of RF is 94 for all feature sets while best parameters 
of SVM-RBF are varied with different features sets. For the 
best features, best cost is 240 and gamma is 2.5 of SVM-RBF 
with 98.96% overall accuracy using validation samples (see 
table 8). Similarly, best feature, best ntree is 94 of RF with 
97.36% overall accuracy using validation samples. 
 

Feature sets Parameters used Overall  Accuracy 
Optical Data Gamma - 9 

Cost -100 
98 .45% 

SAR data Gamma - 9 
Cost -100 

54.55% 

Optical +SAR Gamma - 2.5 
Cost- 240 

98.96% 

Fused VH + 
others features  

(spectral, texture, 
contextual) 

Gamma - 6.5 
Cost- 91 

98.35% 

Fused VV + 
others features  

(spectral, texture, 
contextual) 

Gamma - 3.5 
Cost- 56 

98.20% 

Table 8. Parameter tuning (SVM-RBF)   
 
4.5 Land use/cover classification and accuracy assessment 

Table 9 and figure 4 (a, b, c and d) shows the final land 
use/cover classification and accuracy assessment outcomes 
using different image features, best parameters and machine 
learning algorithms. The results show that optical +SAR 
outperforms the other feature sets and similarly, SVM-RBF 
outperforms the RF and CART and RF outperforms the CART. 
In addition, the quality of the classified map on optical + SAR 
data better as compared to the other feature sets.  
 

Feature sets SVM-RBF RF CART 

Optical Data 88.94% 86.44% 84.26% 

SAR data 34.14% 37.05% 38.42% 

Optical +SAR 88.94% 88.05% 85.47% 

Fused VH + others 
features  

(spectral, texture, 
contextual) 

85.07% 84.91% 81.03% 

Figure 3.  Spectral plot of features extracted 
versus Reflectance 
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Fused VV + others 
features  

(spectral, texture, 
contextual) 

85.23% 85.79% 76.76% 

Table 9. Final classification accuracy using test samples 

5. CONCLUSION AND RECOMMENDATION

As observed in this study, classification of the land use/cover 
using satellite imageries is a very challenging task. Recently, 
machine learning algorithms are playing a very important role 
for improving overall classification. This is because of the non-
linear computational efficiency and compatibility with big 
datasets (e.g., high dimensional features space). Beyond, the 
efficiency of machine learning algorithms, other parameters 
such types of image features, selection of optimum 
hyperparameters, size of training samples are also plays very 
important role for improving the overall classification accuracy. 
In this study, integration of optical data with SAR along with 
others texture and contextual image features are very important 
for the best discrimination of the different types of crops. In 
addition, SVM-RBF is a very efficient and robust classifier as 
compared to RF and CRAT for the classification of the crops 
types. However, classifiers have been train and test over very 
small area with limited training and test samples that may 
introduce some degree of biases for the implication of the 
model for bigger area. Therefore, it is recommended that 
training and testing of the classifiers over the larger area with 
sufficient amount of training and test samples are very essential 
to develop a robust land use/cover (e.g., crop discrimination) 
model. 
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