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ABSTRACT: 
 
Japanese cities are facing a rapidly aging society with birthrates, lower than the average rates of developed world. Population decline 
generates many problems such as depopulation in rural areas. One of the measures implemented is to define core areas for 
maintaining sufficient population density given current and predicted population dynamics. On the other hand, there is a potential 
for the surroundings of the core areas to be run-down because vacancies generate many problems such as crime, susceptibility to fire, 
and other negative events. There have been, however, few measures concerning the spatial distribution of parks and open spaces 
around the core areas. We applied a hedonic approach with a Geographically Weighted Regression (GWR) to the analysis of the 
relationship between the assessed values of land and geographical information in order to estimate the importance of landscape 
factors: the spatial continuity of vegetation distributions, public parks, and the local averages of NDVI. It was shown that the 
number of points where the spatial continuity of vegetation distributions makes positive impacts on nearby land prices is gradually 
increasing during years 2000 and 2015, while the average of land price continues to fall. 
 
 

1. INTRODUCTION 

Japanese cities are facing a rapidly aging society with birthrates, 
lower than the average rates of developed world. Population 
decline generates many problems such as depopulation in rural 
areas, expansion of lower population density in urban areas, as 
well as a boost in spending for the maintenance of infrastructure 
under the pressure of lower revenue. One of the measures 
implemented is a land use strategy for living space and urban 
function. In this measure, Residence Attraction Districts and 
Urban Function Attraction Districts are defined as core areas for 
maintaining sufficient population density given current and 
predicted population dynamics. The core areas are expected to 
play a key role as the fundamental building blocks of future 
cities in an aging society facing population decline. On the 
other hand, there is a potential for the surroundings of the core 
areas to be run-down because vacancies generate many 
problems such as crime, susceptibility to fire, and other 
negative events. The government has developed several 
measures to address the deterioration of the fringe regions of 
the core areas through the creation of some systems that 
encourage conversion from vacancies into allotments, citizens' 
parks, open spaces, and other green spaces. There have been, 
however, few measures concerning the spatial distribution of 
parks and open spaces around the core areas. We have 
developed an advanced analysis method for detecting the spatial 
continuity of vegetation distributions covering parks and open 
spaces through the statistical testing of the spatial features of a 
Normalized Difference Vegetation Index (NDVI) derived from 
remotely sensed data. The method can achieve the detection of 
the spatial continuity of vegetation distributions in accordance 
with the types of land use: a completely urbanized area, a 
suburban area, a rural area, and a mountainous area. In this 
study, we identify the economic impacts of the spatial 
continuity of vegetation distributions through applying several 

data acquired in 2000, 2008 and 2015. We apply a hedonic 
approach with a Geographically Weighted Regression (GWR) 
to the analysis of the relationship between the assessed values 
of land and geographical information in order to estimate the 
importance of landscape factors: the spatial continuity of 
vegetation distributions, public parks, and the local averages of 
NDVI.  
 

2. METHIDS AND MATERIALS 

2.1 Study Area 

The whole area of the Osaka prefecture was adopted as the area 
of interest. This area is located in the Kansai district in the 
western part of Japan. It covers about 1900 krn2 and contains 33 
cities, 9 towns, and 1 village. There are also watercourses 
consisting of several rivers and many streams in the area. 
 
2.2 Remote Sensing and Geographical Data 

We applied the Landsat series of remote sensing data: ETM+ 
data from August 2000, TM data from September 2008, and 
OLS data from September 2015. The data covers the whole area 
of interest since the observation swath of Landsat sensors is 
wide enough (185 km). We applied atmospheric corrections 
based on the MODTRAN for this study. We defined the NDVI 
calculated from the Landsat data as the proxy of vegetation 
abundance. Figure 1 shows NDVI derived from the Landsat 
OLS data as an example. In Figure 1, it is shown that the 
urbanized areas are bounded on three sides by mountainous 
areas covered with high NDVI. National Land Numerical 
Information is used to a hedonic approach including GWR for 
studying the relationship between the land prices and the 
attributes of landscape.  
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Figure 1. NDVI derived from Landsat OLS data from 2018 
 
 
2.3 Methods 

2.3.1 Generation of SSCs and Ridgelines: The spatial 
analysis method of vegetation distribution we have developed is 
composed of a spatial autocorrelation analysis based on G 
statistics, an overlay analysis, and a hydrological analysis 
(Getis 1992, Ord 1995, Kumagai 2011). Figure 2 shows 
procedure of the spatial analysis of vegetation distributions. We 
overlaid the positive autocorrelation areas generated with the 
fluctuation of distance d: from a widest range to a narrowest 
range. The area which consists of the multiple layers of the 
positive autocorrelation area has been called the Spatial Scale 
of Clumping of vegetated areas (SSC). We also detected the 
ridgelines from the SSC as the backbones of the high spatial 
continuity of the vegetated areas by interpreting the SSC as 
topographic features. The ridgelines play an important role in 
acting as bridges between the widely dense distribution areas 
and sparse areas of vegetation, such as the areas (a) and (b) in 
Figure 2.  
 
Moreover, the application area of the spatial analysis was 
expanded through the iteration of the procedure with respect to 
no autocorrelation areas (Kumagai, 2017). Firstly, we applied 
the spatial analysis method to the area of interest, as mentioned 
above. The results of this application were renamed SSCl and 
ridgeline 1. Secondly, we applied the spatial analysis method to 
the area excluding SSCl, which was initially detected as no 
spatial autocorrelation area. SSC2 and ridgeline 2 were then 
generated. Finally, we iterated this procedure to define 
successive SSCs. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Procedure of the spatial analysis of vegetation 
distribution 
 
2.3.2  Hedonic method with GWR: To avoid land 
deterioration around the core areas experiencing population 
decline in the near future, it is also desirable to be able to 
conduct a suitable changeover in land use: the substitution of 
parks and open spaces for vacancies. The changeover should 
contribute to the maintenance and improvement of the spatial 
continuity of vegetation distributions. If spatial continuity plays 
a role in ensuring a rise in value with respect to its surroundings, 
it will be a good motivating factor to encourage an appropriate 
changeover of land use. We therefore used a hedonic method 
with GWR to measure the relationship between the spatial 
continuity of vegetation distributions and land prices (Brunsdon 
et al. 1998, Harris et al. 2013, Mulley et al. 2016, Yoo et al. 
2016, Hu et al. 2016).  
 

m 

0.7- 

-0.2 

less than -0.2 

5   10 20km 0   

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W7, 2019 
TC III WG III/2,10 Joint Workshop “Multidisciplinary Remote Sensing for Environmental Monitoring”, 12–14 March 2019, Kyoto, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W7-41-2019 | © Authors 2019. CC BY 4.0 License.

 
42



 

3. RESULTS AND DISSCUSSION 

 
3.1 Results of the Spatial Analysis 

Figure 3 indicates the results of the spatial analysis. The study 
area is divided into 3 SSCs and no autocorrelation area, being 
common to 2000, 2008, and 2018. The patterns of ridgelines 
also are slightly different between these results. 
 
3.2 Applicability of GWR 

Table 1 shows the variables that we applied to GWR. We 
adopted the shortest distance from the ridgeline to the point as 
the factor of spatial continuity of vegetation distributions. The 
shortest distance to public parks was used as one of the factors 
of urban facilities. We also calculated the local average of 
NDVI within 2 km of the point as the local feature of vegetation 
distributions. These landscape factors are divided into each 
SSC: SSC1, SSC2, and SSC3 because it appeared that the 
division could contribute to make an appropriate model to 
explain land prices (Kumagai 2017). 
 
Before the application of GWR, we examined the relationship 
between the variables by calculating the VIF. It has been 
confirmed that there is no multi-collinearity between the 
variables of Table 1. Initially, we examined the validation of 
GWR using the statistics of F1, F2, and F3 (Leung et al. 2000). 
The variables in Table 1 are applied to both OLS and GWR for 
this examination. The small value of F1 means that the GWR 
model has a better goodness of fit than the OLS model, while 
the large value of F2 means that the GWR model and the OLS 
model do not describe the data equally well. F3 is the test  

Acreage [m2]
Shortest distance to a railway station [m]
Building coverage [%]
Floor area ratio [%]
Commercial area [dummy]
Industrial area [dummy]
Fire protection area [dummy]
Gas supply [dummy]
Sewerage [dummy]

Shortest distance to the ridgeline derived from
SSC [m]
   Ridgelines 1, 2, 3, and 4

Local average of NDVI

Shortest distance to public parks [m]
   Woods, Small park, and Large park

Landscape
 factors

Variables

GI

 
Table 1. Variables we applied to GWR 

 
 

p <0.001 p <0.01

2000 0.735 (p <0.001) 13.11 (p <0.001) 68.0 72.0

2008 0.475 (p <0.001) 9.72 (p <0.001) 88.0 88.0

2015 0.539 (p <0.001) 7.74 (p <0.001) 84.0 84.0

F 3 (Proportion of F k (%))
F 1 F 2Year

 
Table 2. Results of the validation of GWR 

 

Year R 2 AIC Band width(m)

2000 0.853 210 17088.4

2008 0.896 296 8680.7

2015 0.879 414 9619.3
 

Table 3. Results of GWR 
 
statistic Fk of the spatial differences among the terms of 
variables. The large value of F3 means that not all terms are 
equal. Table 2 shows the results of the validation of GWR. The 
p values of F1 and F2 show less than 0.001 in 2000, 2008, and 
2015, respectively. The proportions of significance Fk in F3 
among the three results show more than 70%. Thus, the validity 
of the GWR model is clarified. 
 
3.3 Results of GWR 

Table 3 displays the results of GWR. R2 of all the cases are 
more than 0.85, while AIC and band width seem to depend on 
the cases. Table 4 shows the proportions of t values of the 
variable for landscape factors on the basis of the significance 
level of 5%. The direction (e.g. positive or negative) of an 
impact on land prices depends on the type of variables. In the 
variables of shortest distance to public parks, the woods and 
small parks in SSC2 and SSC3 mostly provide a positive impact 
on nearby land prices in all years. Especially, the number of t of 
the small parks in SSC3, showing a positive impact on nearby 
land prices, gradually increases from 2000 to 2015. NDVI in 
SSC1 and SSC2 nearly indicates a negative impact in all cases, 
while the number of t showing a negative impact in SSC3 
increases by degrees during these periods. It is also indicated 
that there are few points in all SSCs, where NDVI shows a 
positive impact, in all years. On the other hands, in shortest 
distance to the ridgeline derivied from SSC, the number of t 
values of the ridgeline 3 in SSC3, making positive impacts on  
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Figure 3. Results of the spatial analysis 
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t > 1.960
(p(>t)=0.025)

1.960 >=
 t

>= -1.960

-1.960 > t
(p(<t)=0.025)

   Ridgeline 1 in SSC1 90.69 9.31 0.00
   Ridgeline 2 in SSC2 0.00 91.95 8.05
   Ridgeline 3 in SSC3 0.00 99.85 0.15

  NDVI in SSC1 0.00 0.00 100.00
  NDVI in SSC2 0.00 33.62 66.38
  NDVI in SSC3 0.00 100.00 0.00

  Woods in SSC1 53.50 20.18 26.32
  Woods in SSC2 0.00 17.41 82.59
  Woods in SSC3 0.00 2.47 97.53
  Small park in SSC1 0.00 0.96 99.04
  Small park in SSC2 0.00 6.24 93.76
  Small park in SSC3 0.00 59.03 40.97
  Large park in SSC1 30.60 69.25 0.15
  Large park in SSC2 72.32 20.38 7.30
  Large park in SSC3 78.86 21.14 0.00

Shortest distance to public parks [m]

Shortest distance to the ridgeline derived from SSC [m]

Local average of NDVI

 
(a)2000 

 

t > 1.960
(p(>t)=0.025)

1.960 >=
 t

>= -1.960

-1.960 > t
(p(<t)=0.025)

   Ridgeline 1 in SSC1 47.72 38.10 14.18
   Ridgeline 2 in SSC2 13.67 77.73 8.60
   Ridgeline 3 in SSC3 0.00 79.72 20.28

  NDVI in SSC1 3.69 32.87 63.44
  NDVI in SSC2 0.00 51.46 48.54
  NDVI in SSC3 0.00 26.01 73.99

  Woods in SSC1 15.46 48.23 36.30
  Woods in SSC2 0.00 74.81 25.19
  Woods in SSC3 0.56 54.58 44.85
  Small park in SSC1 0.00 2.82 97.18
  Small park in SSC2 0.00 15.21 84.79
  Small park in SSC3 0.00 56.89 43.11
  Large park in SSC1 60.68 36.82 2.51
  Large park in SSC2 35.54 45.21 19.25
  Large park in SSC3 54.02 45.98 0.00

Shortest distance to the ridgeline derived from SSC [m]

Local average of NDVI

Shortest distance to public parks [m]

 
(b)2008 

 

t > 1.960
(p(>t)=0.025)

1.960 >=
 t

>= -1.960

-1.960 > t
(p(<t)=0.025)

   Ridgeline 1 in SSC1 0.00 90.79 9.21
   Ridgeline 2 in SSC2 0.00 100.00 0.00
   Ridgeline 3 in SSC3 4.02 15.96 80.01

  NDVI in SSC1 0.00 33.08 66.92
  NDVI in SSC2 0.00 30.08 69.92
  NDVI in SSC3 0.00 21.83 78.17

  Woods in SSC1 10.30 59.35 30.35
  Woods in SSC2 0.00 16.71 83.29
  Woods in SSC3 0.00 47.61 52.39
  Small park in SSC1 5.53 86.43 8.05
  Small park in SSC2 0.00 76.33 23.67
  Small park in SSC3 0.00 20.94 79.06
  Large park in SSC1 0.00 71.83 28.17
  Large park in SSC2 39.22 51.57 9.21
  Large park in SSC3 66.58 33.42 0.00

(%)

Shortest distance to public parks [m]

Shortest distance to the ridgeline derived from SSC [m]

Local average of NDVI

 
(c)2015 

Table 4. Proportions of t values of the variable in landscape 
factors are indicated on the basis of the significance level of 5% 

nearby land prices, is gradually increasing during years 2000 
and 2015. 
 
3.4 Comparison between Land Prices and Results of 
GWR 

Figure 4 shows the fluctuation of land prices in SSC3 during 
years 2000 and 2015. In Japan, economic bubble occurred from 
the mid-1980s to the early 1990. After this periods, land prices 
generally had declined for about 20 years on the basis of 
economic slump. We can see the distributions of land prices 
being on the decrease during years 2000 and 2015 in Figure 4. 
 
Figure 5 displays the distributions of t values in SSC3. Warm 

Figure 4. Distribution of land prices in SSC3 

(a)2000 (b)2008 (c)2015 

Figure 5. Spatial distribution of t values in SSC3 

(a)2000 (b)2008 (c)2015 
(i) NDVI 

(a)2000 (b)2008 (c)2015 
(ii) Ridgeline 3 

0.31 

0.02 
million yen 

-5.78 

-1.96 
t value 

2.21 

1.96 

1.96 

-1.96 
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colour points mean that the t value is above the significance 
level of 5%, while cold colour points mean that the t value is 
below the significance level of 5%. It is apparent that the 
number of t values of the shortest distance to ridgeline 3, being 
below the significance level of 5%, increases as the land prices 
decrease during years 2000 and 2015. Likewise, the number of t 
value of NDVI, being below the significance level of 5%, 
increases. The local averages of NDVI in 2015 seem to perform 
a general role in this model: usually, the land prices of 
urbanized areas including very few green spaces are relatively 
high, while the land prices of rural areas surrounded by large 
green spaces are relatively low. The local average of NDVI, 
however, does not make a positive / negative impact on nearby 
land prices in the case where land prices are relatively high. 
The shortest distance of ridgeline 3 also does not make a 
positive / negative impact on nearby land prices in 2000. The 
number of points where the shortest distance of the ridgeline 3 
makes a positive impact on nearby land prices is increasing as 
land prices are decreasing during years 2000 and 2015. In other 
words, the spatial continuity of vegetation distributions seems 
to play a more important role in contributing to a substantial 
extent to predict the land prices of suburban areas around the 
core areas as land prices decrease. 
 

4. CONCLUSOIN 

In this study, we applied the multitemporal analysis of the 
relationship between assessed values of land and landscape 
factors by using geographical information data and remotely 
sensed data acquired in 200, 2008, and 2015. On the basis of the 
application of hedonic method with GWR, the landscape factors 
derived from NDVI hardly have a positive / negative impact on 
nearby land prices in case where the average of land prices are 
relatively high. It was shown that the number of points where 
the spatial continuity of vegetation distributions makes positive 
impacts on nearby land prices is gradually increasing during 
years 2000 and 2015, while the average of land price continues 
to fall.  
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