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ABSTRACT: 

In the early 1980′s, the European chestnut tree (Castanea sativa, Mill.) assumed an important role in the Portuguese economy. 

Currently, the Trás-os-Montes region (Northeast of Portugal) concentrates the highest chestnuts production in Portugal, representing 

the major source of income in the region (€50M-€60M). 

The recognition of the quality of the Portuguese chestnut varieties has increasing the international demand for both industry and 

consumer-grade segments. As result, chestnut cultivation intensification has been witnessed, in such a way that widely disseminated 

monoculture practices are currently increasing environmental disaster risks. Depending on the dynamics of the location of interest, 

monocultures may lead to desertification and soil degradation even if it encompasses multiple causes and a whole range of 

consequences or impacts. In Trás-os-Montes, despite the strong increase in the cultivation area, phytosanitary problems, such as the 

chestnut ink disease (Phytophthora cinnamomi) and the chestnut blight (Cryphonectria parasitica), along with other threats, e.g. 

chestnut gall wasp (Dryocosmus kuriphilus) and nutritional deficiencies, are responsible for a significant decline of chestnut trees, with 

a real impact on production. The intensification of inappropriate agricultural practices also favours the onset of phytosanitary problems. 

Moreover, chestnut trees management and monitoring generally rely on in-field time-consuming and laborious observation campaigns. 

To mitigate the associated risks, it is crucial to establish an effective management and monitoring process to ensure crop cultivation 

sustainability, preventing at the same time risks of desertification and land degradation. 

Therefore, this study presents an automatic method that allows to perform chestnut clusters identification, a key-enabling task towards 

the achievement of important goals such as production estimation and multi-temporal crop evaluation. The proposed methodology 

consists in the use of Convolutional Neural Networks (CNNs) to classify and segment the chestnut fruits, considering a small dataset 

acquired based on digital terrestrial camera. 

1. INTRODUCTION

The chestnut (Castanea sativa, Mill.) agro-ecosystem is of great 

social, economic and landscape importance in north-eastern 

Portugal, namely to Trás-os-Montes, due to the various resources 

associated with this crop (e.g. fruit and wood production and 

mushroom harvesting (Baptista et al., 2010).  

The increasing industry and consumer-grade demand at an 

international level is the reason behind chestnut cultivation area 

has been over explored, leading to monoculture practices that 

represent a great environmental risk, eventually, with an 

implicated economic impact as well. Desertification and soil 

degradation are the main concerns in this topic. 

Particularly in Trás-os-Montes, threats related to phytosanitary 

problems of biotic and abiotic origins, such as the chestnut ink 

disease (Phytophthora cinnamomi), and the chestnut blight 

(Cryphonectria parasitica), among others - e.g. chestnut gall 

wasp (Dryocosmus kuriphilus) and nutritional deficiencies - are 

responsible for a significant decline of chestnut trees with a direct 

impact on production, despite cultivation area growth (Martins et 

al., 2015). 

Regarding to chestnut trees management and monitoring, both 

generally rely on costly and time-consuming in-field observation 
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campaigns. To mitigate the risks associated to this culture and 

current exploration practices, it is of high importance establishing 

an effective management and monitoring process to ensure crop 

cultivation sustainability, preventing at the same time risks of 

desertification and land degradation. 

In previous work (Marques et al., 2019), an approach based on 

digital image processing for macro detection and monitoring of 

chestnut trees was proposed, through multiple parameters 

estimation such as tree identification and counting, individual 

extraction of tree height, tree crown diameter and area features, 

using remote sensed imagery acquired by unmanned aerial 

vehicles. Good accuracy and root mean square error (RMSE) 

correlations were achieved. Currently, the challenge of 

performing a more fine-grained analysis through chestnut fruit 

detection is being pursued. Considering that digital image 

analysis typically requires an extended knowledge on the subject 

under study (environment, involved entities, eventual 

interactions, etc.), and on image manipulation operations, which 

usually integrate a burdensome development process that,  in the 

end of the day, is bounded to a very particular class of problems, 

Deep Learning (DL) techniques must not be overlooked. DL 

techniques are becoming increasingly popular for forestry and 

agricultural applications (Kamilaris and Prenafeta-Boldú, 2018), 
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due to their flexible adaptability for characterizing different 

problems in the most varied contexts, requiring minimal changes 

regarding implementation, wherein the quality of the datasets 

constitute the key for success. Thus, one of the most prominent 

motivation for such study is admittedly related to advances in 

neural networks, namely in what concerns to backpropagation. It 

is, also, a goal assessing the application of such class of 

approaches in the identification of elements of interest in rough 

conditions, as it is the case of the chestnut fruit still hanging in 

the tree, whose color and texture might be easily confounded with 

background, depending on its phenological state.  

This study presents an automatic method that allows to perform 

chestnut trees clusters identification, a key-enabling task towards 

the achievement of important goals such as production estimation 

and multi-temporal crop evaluation. The proposed methodology 

consists in the use of Convolutional Neural Networks (CNNs) to 

classify and segment the chestnut fruits, considering a small 

dataset acquired based on digital terrestrial camera. 

 

2. BACKGROUND 

DL is a modern and promising technique for image processing 

and data analysis, whose application domains include (but are not 

limited to) plant recognition, leaf and crop type classification and 

plant diseases detection, among other useful operations with 

benefits for natural environments mainly populated by vegetation 

(Kamilaris and Prenafeta-Boldú, 2018).  

Grinblat et al. (2016) used CNNs to identify plants through leaf 

veins morphology. Similar research interests were pursued by 

Lee et al. (Lee et al., 2015), with 44 species of the Royal Botanic 

Gardens (Kew, England). Hall et al. (Hall et al., 2015) evaluated 

the robustness of traditional hand-crafted leaves features and 

showed classification performance improvement by combining 

CNNs with such features, while Reyes et al. (2015) proposed a 

fine-tuning strategy as a solution to transfer learned recognition 

capabilities from general domains to the specific challenge of 

plant Identification task. The possibility of increasing the number 

of hidden layers within CNNs was explored to boost 

discriminative power, with remarkable results on plant 

phenotyping classification, more specifically, focusing root and 

shoot features (Pound et al., 2017). Semantic segmentation using 

deep convolutions was applied by Mortensen et al. (Mortensen et 

al., 2016), who resorted to close-up images of crops, data 

augmentation and manual annotation of 7 classes, among them 

barley, weed and soil. The potential of CNNs for segmenting 

plant species was emphasized. DL-based solutions towards plant 

recognition include (Lee and Yoon, 2019; Zhu et al., 2018). Also, 

efforts to achieve computer-based recognition of plant diseases 

have been developed (e.g. Sladojevic et al., 2016; Mohanty et al., 

2016, Amara et al., 2017 and Toda and Okura, 2019).  

In the specific case of fruit detection/recognition/counting, 

whose addressing problems recurrently include occlusion, depth 

variation, and uncontrolled illumination and high color similarity 

between fruit/foliage, a few solutions can also be found. An 

approach combining two CNNs to detect and count apples and 

oranges was proposed by Chen et al. (2017). Labelling was done 

through a crowdsourcing tool that enables to quickly produce 

hand-made datasets. Fruit detection in orchards, including 

mangoes, almonds and apple was a challenge embraced by S. 

Bargoti and Underwood (2017), who used a tiling approach to 

deal with the hundreds of fruits that can be present in a single 

image and a Faster Region-CNN (R-CNN) for estimation 

purposes. Apples and mangoes could be accurately detected. 

These cultures earned attention in two other (apparently) 

previous works (Suchet Bargoti and Underwood, 2017; Stein et 

al., 2016). (Rahnemoonfar and Sheppard, 2017) used synthetic 

data to predict real fruits, resorting to an Inception-ResNet 

architecture. Accuracies for both synthetic and real data were 

above 90%. Fruit detection based on Faster R-CNN and using 

RGB and NIR proximity imagery was a concern for Sa et al. 

(2016).   

Regarding CNN architectures, a considerable amount of them 

have been proposed: VGG - named after Visual Geometry Group 

labortatory - (Simonyan and Zisserman, 2014), ResNet (He et al., 

2015), Inception family (Szegedy et al., 2014; Szegedy et al., 

2015; Szegedy et al., 2016), Google’s MobileNet (Howard et al., 

2017), Xception (Chollet, 2016) and DenseNet (Huang et al., 

2016). Segmentation networks oriented to object detection 

include – but are not confined to - Fully Convolutional Network 

(FCN) (Long et al., 2014), ParseNet (Liu et al., 2015), U-Net 

(Ronneberger et al., 2015) and Feature Pyramid Network (FPN) 

(Zhao et al., 2016). 

Following DL advances, many tools that have been developed to 

facilitate the interface of programmers and users with the 

modelling of problems through convolutional neural networks, 

such as TensorFlow (“TensorFlow,” 2015), Theano (“Welcome 

— Theano 0.9.0 documentation,” 2007), Keras (“Keras 

Documentation,” 2015), deep learning Matlab toolbox (“Deep 

Learning Toolbox,” 2016), Caffe (“Caffe | Deep Learning 

Framework,” 2013), PyTorch (“PyTorch,” 2016) or even user-

friendly studios such as Deep Cognition (“Deep Cognition,” 

2018). 

The following sections focus the proposal of a preliminary 

methodology consisting in the use of Convolutional Neural 

Networks (CNNs) to classify and roughly segment the chestnut 

clusters, considering a small dataset acquired based on digital 

terrestrial camera. 

 

3. DEEP LEARNING-BASED APPROACH TOWARDS 

CHESTNUT FRUIT DETECTION 

After imagery gathering, and dataset preparation – involving 

manual segmentation, rough tiling and training/validation sets 

splitting – an Xception architecture was prepared to learn and 

predict chestnut clusters still hanging in the tree. The whole 

process is depicted in Figure 1. 

 

 
Figure 1. Pipeline of the process adopted to apply DL in chestnut 

clusters segmentation. After proper pictures 

acquisition, fruit annotation and tilling, datasets are 

set up to comply with CNN requirements and 

submitted to Xception processing for the learning 

stage. After model output, pictures for prediction can 

be submitted to estimate the presence/absence of 
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chestnuts, which implies a preliminary tiling 

operation. 

 

3.1 Tree models used for gathering imagery 

The dataset was created using a Canon EOS 600D, with a CMOS 

of 18 MP resolution. A focal distance of 23 mm was used. The 

acquisition was performed from September to October 2018 in 

two different chestnut plantations, one within the campus of the 

University of Trás-os-Montes e Alto Douro and another in 

plantation located in a rural area (see previous work of Pádua et 

al., 2018, for more information on this plantation). 

From the gathered images, two were chosen for CNN training 

and validation purposes, while a third one was left out for testing 

CNN performance. Used images original dimensions are 

3260x2480 pixels (96dpi). 

It is noteworthy to highlight that, typically, chestnut clusters are 

mainly concentrated in the extremities of trees’ branches, which 

makes it viable the use of imagery for crown analysis towards 

fruit detection. On the other hand, fruit clusters and background 

similarities in terms of colour and tonality can constitute a real 

challenge due to their proneness to be misclassified, besides the 

reduced size of the element of interest. 

 

3.2 Dataset preparation  

First task towards dataset preparation implied the manual 

production of ground-truth masks, to identify/classify the fruits 

of interest among the 3 images composing referenced imagery. 

An example depicting a mask overlaid with transparency upon a 

chestnut tree picture is presented in Figure 2, wherein brown 

spots represent fruit clusters annotation. Then, algorithmically, 

images and masks were properly sliced into tiles of 71x71, the 

minimum input dimensions supported by Xception. Regarding 

mask images, granular classification was converted into rough, 

inasmuch as tiles matching with more than 2.5% of white pixels 

in the original ground-truth - marking the elements of interest - 

were completely turned into white, fostering dataset enrichment 

through a wide variety of conditions that can be characterizing 

chestnut clusters (completely framed, partially visible, with more 

or less background, several development states, etc.). Two 

classes are divided according to masks: one denoting background 

and another specifying chestnut clusters. This process is 

essentially characterized by the creation of two virtual folders 

within the operative system. 3060 tiles resulted from this 

operation, 2470 for background and 590 for chestnut. 

 

 
Figure 2. Example of a chestnut picture with the fruits annotated 

with brown blobs, manually drawn. 

 

To comply with the common Deep Learning practices, the 

aforementioned group of tiles was properly split in a couple of 

datasets, each one composed of training (70% of the available 

images) and validation (30% of the available images). One of the 

datasets relies in the post-tiling operation, which consists in an 

unbalanced knowledge base, with much more images for 

background than for chestnuts. To tackle with an eventual off-

balance training, another dataset based on the former was 

produced, but considering a data augmentation step to even both 

chestnut and background elements. More specifically, the 

unbalanced dataset was augmented with 1940 images, totalizing 

5000 of them, 2500 per class. Data augmentation consisted in 

synthetically replicating existing imagery with transformations 

that included different rotations, contrasts/brightness, 

vertical/horizontal mirroring and scale variations. 

 

3.3 CNN architecture 

Xception (Chollet, 2016) combines point-wise convolutions 

followed by depth-wise separable convolutions and residual 

connections (inspired by ResNet (He et al., 2015)). By 

exchanging the order of operations relatively to original depth-

wise separable convolution - that starts by convoluting the 

channels and then the pixels - and, also, by removing 

intermediate rectified linear units (ReLU’s) non-linearity, 

Xception reached state-of-the-art performances in tests with 

ImageNet dataset (Russakovsky et al., 2014). Thereby, Xception 

architecture was adopted to assess chestnut fruit training and 

detection estimation. The optimizer used on this network was the 

stochastic gradient descendent (SGD), which already shown 

good results in previous studies, comparatively to learning rate 

adaptative managers (Adão et al., 2019). 

The next section will focus the tools used to put into practice the 

proposed chestnut detection approach.  

 

4. MATERIALS AND METHODS 

To prepare and produce the datasets used in this work, image 

editing/manipulation operations were carried out with a 

specialized software. Also, programming tools were employed to 

handle DL-related activities. Free and open-source software was 

selected. 

 

4.1 Image editing and manipulation 

For dataset preparation and production, Paint.NET (Rick 

Brewster’s project as a student, Pullman, Washington, United 

States of America) was used. It consists in a handy set of image 

processing tools supporting multi-layer capabilities. It offers the 

possibility of upgrading functionalities resorting to plugins that 

can be freely developed by the community. 

Masks’ manual delineations to segment chestnut fruits were 

carefully carried out, by taking advantage of multi-layer 

capabilities provided by Paint.NET, as well as the possibility for 

parameterizing overlay transparency for individual layers. To 

sum up, for each chestnut image, mask production can be 

performed by adding another layer to the top of the image that, 

basically, consists in a black canvas where in white stains can be 

drawn to annotate fruit clusters.  

 

4.2 Programming tools 

Programming activities were done in Python (“Welcome to 

Python.org,” 2018), namely, the tiling-based dataset production. 

DL implementation resources relied in Keras (“Keras 

Documentation,” 2015) supported by Tensorflow 

(“TensorFlow,” 2015) backend. Keras’ Xception baseline 
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implementation was adopted as CNN, to generate the models for 

prediction purposes. During testing estimations with unseen data, 

several parameters were monitored to assess resulting Xception-

based models, namely the ones presented in the next subsection. 

 

4.3 Evaluation metrics 

Widely accepted assessment indicators were used as evaluation 

metrics, more specifically, true positive/negative (TP, TN) and 

false positive/negative (FP, FN) tiles counting, as well as Dice 

coefficient and Jaccard Index. The formulas for latter pair of 

metrics are presented in equations (1 and 2), under a set theory 

perspective, wherein DC and JI represent Dice Coefficient and 

Jaccard Index, both operating with two sets specified by X and Y. 

 

 𝐷𝐶 =  
2 |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
      (1) 

 

 𝐽𝐼 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
     (2) 

 

4.4 Relevant hardware details 

Regarding the computational resources, the hardware that is 

worth to highlight is related with the DL-based activities, in 

which two graphical cards NVidea Quadro M4000 (Nvidia 

Corporation, Santa Clara, California, USA) - 1664 CUDA cores, 

8GB of GDDR5 memory and a maximum bandwidth of 192GB/s 

- working in cooperation were used, allowing to speed-up both 

training/validation and testing procedures. 

 

Results and discussion, based on the aforementioned assessment 

parameter, are presented in the following section. 

 

5. RESULTS AND DISCUSSION 

Training/validation results, as well as assessment with unseen 

data - i.e., a chestnut tree wittingly reserved for CNN approach 

evaluation - are presented in this section. 

 

5.1 Training/validation stage 

Training/validation stage was set to perform during a maximum 

of 20 epochs, with a batch size of, also, 20, for the both non-

augmented and augmented datasets that went through Xception 

CNN processing and model outputting. Only two classes were 

considered for a binary problem: background and chestnut. Steps 

per epoch were set according to the ratio between the number of 

training images and batch size. Validation steps were defined by 

the same rule, i.e. number of validation images divided by the 

batch size. Early stop monitors were defined with a patience of 5 

epochs relatively to loss validation parameter, which stops the 

training in case of consecutive learning stagnation.  

The training/validation plots of the learning stage seems to point 

out a steady convergence, even though there is still some space 

for loss and accuracy improvement. The non-augmented dataset 

was the first used to shape up a Xception-based model. Regarding 

training behaviour parameters, it started with a loss of 0.41 and 

ended with 0.29. Accuracy started growing from 0.83 until it 

reached 0.88. Analysing validation behaviour parameters, 

accuracy raised from 0.27 until 0.87, in the last epoch; loss 

gradually improved from 4.88 until 0.31. Due to the early stop 

monitor call-back, learning process was stopped at the 12th 

epoch, in which the progress was perceived as stuck. The 

augmented dataset made the Xception learning process slightly 

improve its accuracy and loss. Regarding training, accuracy 

improved from 0.73 until 0.91, while loss decreased from 0.53 to 

0.21. Looking at validation, accuracy progressed from 0.63 until 

0.91; loss gradually decreased from 0.61 until 0.23. The last 

epoch of training was the 16th, when the patience of the early stop 

monitor reached its limit for learning stagnation. Figure 3 shows 

the learning plots for both datasets. 

 

  a) 

  b) 

Figure 3. CNN training/validation results for a) dataset without 

augmentation and b) dataset with augmentation. A 

convergence tendency can be observed for both. 

 

5.2 Chestnut detection in unseen data 

To proceed with the actual tests to assess CNN models – resulting 

from both previously mentioned datasets (non-

augmented/unbalanced and augmented/balanced) used for 

training – regarding chestnut fruit detection capabilities, a single 

image without participation in the training stage was used. It was 

decomposed into 1530 position-aware tiles of 71x71 that were 

submitted to the referred models individually and in two different 

moment, whose estimation results were provided in the form of 

rough tiled-based masks, as it is shown by Figure 4. 

 

  
a) b) 

  
c) d) 

Figure 4. Testing image for assessment purposes: a) is the RGB 

image of the chestnut used for assessment; b) 

represents tile-based rough ground-truth; c) is the 

mask generated by the estimation using a Xception 

model trained with the non-augmented/unbalanced 

dataset; d) is the mask generated by the estimation 
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using a Xception model trained with the 

augmented/balanced dataset. 

 

Quantitative metrics are provided by Table 2, wherein one can 

conclude about the importance of DL mechanisms such as data 

augmentation and balancing, especially in situations of dataset 

scarcity, as it is the case in this study. As it is clarified, the model 

based on the non-augmented dataset presents a much lower Dice-

Coefficient (0.59) than the model built out of the augmented 

dataset (0.70). 

 

DS 
Estimation Data 

TP(tl) FP(tl) TN(tl) FN(tl) DC JI 

1 222 313 995 307 0.59 0.41 

2 301 254 975 228 0.70 0.54 

 

Table 1. Results of the estimations made using the models trained 

with both non-augmented/unbalanced (DS 1) and 

augmented/balanced datasets (DS 2). TP, FP, TN and 

FN correspond to True positive, False Postive, True 

Negative and False Negative, respectively; all of 

them are measured in numbers of pixels. DC stands 

for Dice Coefficient, while JI represents Jaccard 

Index, both presented as percentual quantities. The tl 

designation should be read as tiles number. DS is a 

short form of dataset. 

 

Comparatively to other studies focusing fruit detection, this work 

seems to have much space for improvement, starting by the 

datasets strengthening. Also, the rough segmentation proposed in 

this approach can be perfectly replaced by fine-grained emerging 

strategies such as Feature Pyramid Networks (FPN). Another 

aspect worth of attention would be to test complementary digital 

image processing algorithms to address contrast stimulation with 

the goal (of attempting) to mitigate chestnuts and background 

visual resemblance, in certain conditions and environments. 

 

6. CONCLUSIONS AND FUTURE WORK 

A preliminary study focusing the application of CNNs to detect 

chestnut clusters hanging in the respective trees species was 

addressed in this paper. For this purpose, a small dataset 

composed of digital photographs of three chestnut trees within 

Trás-os-Montes region was prepared to comply with CNN 

requirements. Imagery’s chestnuts were manually annotated – 

based on segmentation masks – and, then, considering that 

guidelines, two of those images were algorithmically split into 

tiles that, in turn, were distributed by training and validation sets, 

each one integrating two groups of this binary problem, i.e., 

chestnut and background. Also, data augmentation was 

performed to generate pseudo-new cases for both of the involved 

classes and balance datasets, since background had much more 

examples than chestnut. A third image was saved for assessment 

purposes. 

Using an Xception optimized by an SGD, training stages were 

performed to build models based on the set-up datasets, followed 

by assessment predictions on unseen data. 

Regarding the accuracies of the tested models, values were not 

so high (0.59 and 0.70 Dice-Coefficient rates), but some 

conclusions can be drawn: dataset augmentation and balancing 

are useful tools to improve models’ learnability, mainly in 

situations of data scarcity, as it is the case in this work. Also, the 

apparent convergence of the models at the end of training stage 

does not ensure reliable results, especially in problems that can 

be characterized by an infinity of conditions, as it typically occurs 

in natural environments. 

To conclude, chestnut detection is not a problem with a 

straightforward solution, due to the characteristics of this fruit, 

i.e., its resembling features with background, namely, color and 

tonality, not to mention the several phenological states that it 

goes through and its recurrently reduced size. Therefore, future 

work must encompass a wider study with a broader dataset 

acquired in the most varied conditions and fruit development 

stage, and techniques for data stratification. Other approaches 

focusing fine-granularity segmentation – e.g. U-Net or Feature 

Pyramid segmentation – must be considered as well for 

upcoming studies. The results obtained in this study also 

encourages to explore the effectiveness of this approach to be 

applied in high-resolution imagery acquired from unmanned 

aerial vehicles, since this remote sensing platforms provide a 

quick way to assess either the overall status of chestnut 

plantations or some particular close-range aspects. Moreover, the 

approach proposed in this paper seems to be promising to foster 

the automatic detection of damages induced by chestnut gall 

wasp in the tree buds. 
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