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ABSTRACT: 

 

On July 7, 2018, a large landslide occurred at the eastern slope of the Fagraskógarfjall Mountain in Hítardalur valley in West Iceland. 

The landslide dammed the river, led to the formation of a lake and, consequently, to a change in the river course. The main focus of 

this research is to develop a knowledge-based expert system using an object-based image analysis (OBIA) approach for identifying 

morphology changes caused by the Hítardalur landslide. We use synthetic aperture radar (SAR) and optical remote sensing data, in 

particular from Sentinel-1/2 for detection of the landslide and its effects on the river system. We extracted and classified the 

landslide area, the landslide-dammed lake, other lakes and the river course using intensity information from S1 and spectral 

information from S2 in the object-based framework. Future research will focus on further developing this approach to support 

mapping and monitoring of the spatio-temporal dynamics of surface morphology in an object-based framework by combining SAR 

and optical data. The results can reveal details on the applicability of different remote sensing data for the spatio-temporal 

investigation of landslides, landslide-induced river course changes and lake formation and lead to a better understanding of the 

impact of large landslides on river systems. 

 

1. INTRODUCTION 

1.1 Background 

Accurate mapping of landslides is an important element for 

hazard analysis. On July 7th 2018, a large landslide occurred on 

the eastern side of the Fagraskógarfjall mountain in the 

Hítardalur valley, west Iceland. The landslide blocked the river 

and led to the formation of a lake upstream (Helgason et al., 

2019). According to the Icelandic Meteorological Office (IMO), 

the Fagraskógarfjall landslide is considered among the largest 

landslides in historical time in Iceland, with an estimated 

volume of 10-20 million cubic meters (Pétursson, 2018). Rapid 

mass movements are common  geomorphological processes in 

Iceland and pose a significant risk to people and infrastructure 

(Sæmundsson et al., 2018). 

Earth Observation (EO) data has great potential for mapping, 

monitoring and analysis of landslides, and particularly 

landslides and landslide-dammed lakes (Cigna, 2018). It can 

provide valuable information for rapid landslide mapping 

(Plank et al., 2016). Synthetic Aperture Radar (SAR) imagery, 

in particular, is an important source of information, together 

with optical satellite imagery, for hazard analysis (Joyce et al., 

2009). Especially the combined interpretation of SAR and 

optical imagery offers valuable possibilities for landslide 

mapping, for example in emergency situations, while existing 

approaches still need to be improved (Hölbling et al., 2018).  

In this study, we focus on using freely available Sentinel-1 (S1) 

SAR and Sentinel-2 (S2) optical imagery for mapping the 

Hítardalur landslide, and analysis of the changes in the river 

course.  

The main objectives of this study are: 

1. to explore the potential of SAR imagery for landslide 

mapping in conjunction with optical imagery within an 

object-based image analysis (OBIA) framework, and 

2. to study changes in the river channel system in the 

Hítardalur valley after the landslide 

 

1.2 SAR for Landslide Mapping 

Accurate detection of land-surface changes is a key element for 

understanding processes and interactions between human and 

natural phenomena (Lu et al., 2004; Singh, 1989). SAR imagery 

has the potential to be used for hazard assessment, by providing 

large-scale two-dimensional (2D) high spatial resolution images 

of the Earth’s surface (Lee and Pottier, 2009). Radar pulses can 

penetrate through clouds (nearly weather independent), and they 

can provide data during day and night (sun independent) 

(Jensen, 2015). According to Lee and Pottier (2009), the surface 

reflectivity measured by radar imagery (a.k.a.: radar backscatter 

coefficient σ0) is a function of the radar system parameters 

(such as frequency, polarization, incident angle, etc.); and the 

surface parameters (such as topography, roughness, dielectric 

properties of the medium, moisture, etc.). 

These parameters can be used to extract features from SAR 

imagery. Moreover, different polarizations provide different 

information about features of interest on the ground. Four 

polarizations are possible by combining horizontal (H) and 

vertical (V) polarized waves for sending and receiving antennas 

i.e. HH, HV, VV, and VH (Jensen, 2009). Depending on the 

structure and position of the feature of interest, it might appear 

differently when varying the polarization.  

 

1.3 Object-based Image Analysis  

Object-based image analysis (OBIA) has been used for more 

than two decades as a framework for feature extraction, 

especially from very high spatial resolution imagery (Blaschke 

et al., 2014; Chen et al., 2018). OBIA is highly suitable for 

combining different sources of information, such as spectral and 

textural features and the integration of spatial information 

during image segmentation and classification to complement 

and improve existing approaches for landslide mapping 

(Hölbling et al., 2017). With the increasing availability of SAR 

imagery, its integration in OBIA approaches for feature 

extraction is expanding within the literature (Casagli et al., 

2016). 
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2. STUDY AREA AND DATA 

2.1 Study Area 

The study area is in the Hítardalur valley at the eastern side of 

the Fagraskógarfjall mountain in West Iceland (Figure 1).  
 

 
Figure 1. The study area is located at the eastern side of the of 

Fagraskógarfjall mountain, West Iceland. The yellow circle 

indicates the landslide location. 

 

2.2 Data 

The Sentinel missions, designed and developed by the ESA 

(European Space Agency), with its high temporal resolution 

provide very good opportunities for mapping and monitoring 

spatio-temporal dynamics of land surface morphology. Two 

data sets were used in this study: a) Sentinel-1 (S1), which 

provides SAR data and b) Sentinel-2 (S2), which provides 

optical imagery at high spatial resolution between 10 and 60 

meters (Table 1).  

S1 carries a C-band SAR instrument and obtains data in dual 

polarization such as VH and VV, or HH and HV. We used the 

Ground Range Detected High resolution (GRDH) S1 product 

for intensity analysis, including the Interferometric Wide (IW) 

swath mode included VH and VV polarization, and the Extra 

Wide (EW) swath mode included HV and HH polarization. 

Both modes were combined and used for feature classification 

based on the backscatter coefficient. In addition, we used a pre- 

and post-event S1 and S2 images for extracting the landslide, 

landslide-dammed lake, lakes and river course. Furthermore, we 

identified river course changes due to the landslide event.  

 

Date 
Sensor, Type, 

Mode 
Polarization 

Pre/Post 

event 

2018/07/05 S1-A, IW, GRDH VH, VV Pre 

2018/07/09 S1-B, IW, GRDM VH, VV Post 

2018/07/10 S1-A, EW, GRDH HV, HH Post 

2018/07/11 S1-A, IW, GRDH VH, VV Post 

Date Sensor, Product 
Pre/Post 

event 

2018/06/20 S2-B, MSI Level-1C Pre 

2018/07/17 S2-B, MSI Level-1C Post 

Table 1. Sentinel-1(S1) and Sentinel-2 (S2) images used. 

 

3. METHODS 

3.1 Pre-processing 

The pre-processing of S1 data was performed using the Sentinel 

Application Platform (SNAP) toolbox (Zuhlke et al., 2015). A 

spatial subset of the images was extracted within the study area 

to improve the computing efficiency. The overall pre-processing 

of the S1 data for intensity analysis included thermal noise 

removal, orbit file calibration, terrain correction, and DEM-

assisted co-registration.  

For the S2 imagery, the gathering of the data and pre-processing 

was performed using Google Earth Engine. The cloud mask 

provided with Level 1C data was used to mask out clouds in 

both S2 images. The images were clipped to the study area and 

exported for further analysis. 

 

3.2 Change Detection  

According to Singh (1989), change detection is the process of 

identifying differences in the state of an object or phenomena by 

observing it at different times. Change detection is useful for 

disaster monitoring and damage assessments. The assumption is 

that changes on the Earth’s surface must result in changes in 

radiance values of that particular media, hence, it must change 

the radiance reflected in the EO imagery. However, changes 

might happen due to several other parameters, such as 

differences in atmospheric conditions, difference in sun angle, 

and differences in soil moisture (Jenson, 1983). Therefore, the 

choice of the EO imagery on which the change detection will be 

applied is crucial. The change detection technique was based on 

a differencing method, meaning that one image (pre-event 

image) is subtracted from a second image (post-event image). 

The main challenge of such a method is deciding where to place 

the thresholds, and to establish where changes happened or not.  

In this research, change detection was done on a pixel level, 

between two pre (2018/07/05) and post (2018/07/11) S1 images. 

The change detection was performed using the SNAP toolbox. 

The following products were produced and imported to 

eCognition (Trimble) to conduct OBIA for feature extraction:  

1. Change detection using VH polarization 

2. Change detection using VV polarization 

3. Combining four polarizations: VV, VH, HV, VV 

4. S2 images, including pre- and post-event 

 

3.3 Object-based Image Analysis and Data Integration 

We used OBIA to semi-automatically extract the changed areas. 

Four classes were defined: 1) landslide, 2) landslide-dammed 

lake, and 3) river course, and 4) lakes. The overall framework 

included a multiresolution segmentation and a rule-based 

feature extraction and classification at the object level. 

 

4. RESULTS  

4.1 Feature Extraction Using OBIA 

Table 2 shows the EO imagery (S1 and S2) used for this study.  

 

EO imagery Legend 

 

S1 (2018/07/05, 
pre-event);  

Polarization: 
VH 
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S1 (2018/07/11, 

post-event);  
Polarization: 

VH 

 

S1 (2018/07/09,  

post-event); 

Polarization: 
VH 

 

 

S1 (2018/07/09,  

post-event); 
Polarization: 

VV 

 

 

S1 (2018/07/10,  

post-event); 

Polarization: 

HH 
 

 

S1 (2018/07/10,  
post-event); 

Polarization: 

HV 
 

 

S1 

(2018/07/09-10,  
post-event); 

R:VH 

polarization 
G:VV 

polarization 

B:HV 
polarization 

 

S2 (2018/06/20, 
pre-event); 

Natural colour: 

R: band 4  
G: band 3  

B: band 2  

 

S2 (2018/07/17,  

post-event); 

Natural colour:  

R: band 4  

G: band 3  
B: band 2 

 

Table 2. The of S1 and S2 images used for change detection, 

and object-based classification.  

In all post-event S1 images, the landslide is visually 

distinguishable from its surroundings due to its very bright 

appearance. In the S1 imagery, there is a bright area above the 

landslide (top of the mountainous area), which is caused by the 

foreshortening effect.  

The open water body areas (such as a big lake in the lower left 

of the subset or the landslide-dammed lake in the upper right 
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north of the landslide deposition area) appear very dark 

compared to their surroundings. The river course also appears 

dark. The four features of interest, i.e. landslide, landslide-

dammed lake, other lakes and the river course, were 

distinguished from each other using a S1 false colour composite 

(red: VH, green: VV, and blue: HH).  

Classification rules based on expert-knowledge were used to 

extract objects of interest from of the S1 imagery. The 

following procedure was applied: 

1. Multiresolution segmentation 

2. Feature extraction based on backscatter coefficient for 

landslide and lakes 

3. Removing false positives based on area thresholds  

4. Spatial relationships between lakes and landslide was 

used to classify landslide-dammed lake 

 

We used the S2 pre-event image to extract the river course. The 

multiresolution segmentation was applied on the S2 image, 

whereby the segmentation parameters were tuned by an expert 

guided trial and error approach. The class river course was 

classified in the OBIA framework using knowledge-based 

classification rules. 

 

Figure 2 illustrates the results of the object classification using 

combined multi-polarization S1 images and the pre-event S2 

image. The landslide and the lakes were classified using S1 

imagery, and the river course was classified using the S2 pre-

event image. 

 

  

 
Figure 2. Classification results using S1 and S2 imagery, 

showing the following classes: Landslide-dammed lake, 

landslide, lakes, river course.  

4.2  Change Detection Using Different Polarimetry 

The second objective of this study was to explore the effect of 

different polarizations for the analysis of changes, specifically 

the case of a landslide event and the subsequent creation of a 

landslide-dammed lake. 

We used two S1 images, the pre-event image from 2018/07/05, 

and the post-event image from 2018/07/11. We used a rule-

based image classification approach for VH and VV 

polarizations (Figure 3). The change detection included 1) a 

multiresolution segmentation, and 2) the use of classification 

thresholds based on the objects mean values for each 

polarization. 

 

  

 
Figure 3. Results of the feature extraction from change detection 

products for two polarizations: a) VV and b) VH. 

Finally, we used the symmetrical difference between the class 

landslide and the class river course and measured the length of 

1.897 km for the old river course which was fully covered by 

the landslide. We used the S2 pre- and post-event change 

detection product and measured 4.663 km for the length of the 

old river bed where no water is running anymore due to the 

diversion of the river water.  

The area covered by the landslide-dammed lake was measured 

about 48 ha and the area covered by the landslide was measured 

about 170 ha (Figure 4).  

 

 

 
Figure 4. The final classifications result based on S1 and S2 

imagery. 
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4.3 Validation 

According to Helgason et al. (2019), the landslide-dammed lake 

was ~ 47 ha, and the debris covers approximately 150 ha. 

According to our analysis the area covered by the landslide-

dammed lake is approximately 48 ha, and the landslide area is 

about 170 ha. As shown in Figure 4 the new river course was 

not completely classified using this approach. This might relate 

to the setting of the multiresolution segmentation and that the 

resulting objects do not meet the classification thresholds.   

 

5. DISCUSSION  

In this study, we investigated the Hítardalur landslide and its 

impact on the river system based on pre- and post-event EO 

data. We used S1 and a combination of different polarizations, 

and created change detection products for VV and VH 

polarizations. The object-based classification was done based on 

rule-based and expert knowledge. We were able to extract the 

landslide, the landslide-dammed lake and other lakes 

successfully from S1 imagery. However, the extraction of the 

class river course was not straightforward using S1 imagery, 

since there were several misclassifications between river course 

and shadow areas. Therefore, we used S2 imagery to extract the 

river course and the changes in the river course caused by the 

landslide.  

The second objective of this study was to use different 

polarizations, i.e. VV and VH, for change detection. In this 

research, the changed areas (landslide and landslide-dammed 

lake) are better detectable using the VH polarization. Thus, for 

this case study, VH polarisation can be a better candidate for 

extracting changes related to landslides and landslide-dammed 

lakes. The result of change analysis for VV polarization 

contained not only the changed areas, but also water bodies and 

vegetation. Therefore, the use of this polarisation for change 

detection should be handled with care. A more detailed 

investigation is needed to generalize this effect to other areas. 

This study showed the potential of using freely available EO 

imagery such as S1 and S2 images for analysing and studying 

natural hazards, such as large landslides, and their impacts.  

 

6. CONCLUSION 

SAR imagery provides unique products that can be used for 

emergency response, like in the case of landslide events 

(Casagli et al., 2016; Hölbling et al., 2012). We successfully 

mapped the landslide, the landslide-dammed lake and other 

lakes using S1 imagery within an OBIA framework. We also 

demonstrated that change detection using VH polarisation 

achieved a better result compared to change detection using VV 

polarization.   

We also showed that OBIA is a suitable method to map the 

changes caused by landslides. Future work will focus on the 

transferability of the approach to the other area where landslides 

affect the rivers system. 

 

ACKNOWLEDGEMENTS 

This research has been supported by Austrian Science Fund 

(FWF) through the project MORPH (Mapping, monitoring and 

modelling the spatio-temporal dynamics of land surface 

morphology; FWF-P29461-N29) and the Doctoral College 

GIScience (DK W 1237-N23), and by the Austrian Academy of 

Sciences (ÖAW) through the project RiCoLa (Detection and 

analysis of landslide-induced river course changes and lake 

formation),  

 

 

REFERENCES 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., 

Addink, E., Queiroz Feitosa, R., van der Meer, F., van der 

Werff, H., van Coillie, F., Tiede, D., 2014. Geographic Object-

Based Image Analysis – Towards a new paradigm. ISPRS J. 

Photogramm. Remote Sens. 87, 180–191. 

https://doi.org/10.1016/J.ISPRSJPRS.2013.09.014 

 

Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., 

Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, 

C., Vlcko, J., Greif, V., Proske, H., Granica, K., Falco, S., 

Lozzi, S., Mora, O., Arnaud, A., Novali, F., Bianchi, M., 2016. 

Landslide mapping and monitoring by using radar and optical 

remote sensing: Examples from the EC-FP7 project SAFER. 

Remote Sens. Appl. Soc. Environ. 4, 92–108. 

https://doi.org/10.1016/J.RSASE.2016.07.001 

 

Chen, G., Weng, Q., Hay, G.J., He, Y., 2018. Geographic 

object-based image analysis (GEOBIA): emerging trends and 

future opportunities. GIScience Remote Sens. 55, 159–182. 

https://doi.org/10.1080/15481603.2018.1426092 

 

Cigna, F., 2018. Observing geohazards from space. MDPI. 

https://doi.org/https://doi.org/10.3390/books978-3-03842-776-6 

 

Helgason, J.K., Sæmundssson, Þ., Drouin, V., Jóhannesson, T., 

2019. The Hítardalur landslide in West Iceland in July 2018, in: 

EGU: Geophysical Research Abstracts. Vienna, Austria. 

 

Hölbling, D., Eisank, C., Albrecht, F., Vecchiotti, F., Friedl, B., 

Weinke, E., Kociu, A., Hölbling, D., Eisank, C., Albrecht, F., 

Vecchiotti, F., Friedl, B., Weinke, E., Kociu, A., 2017. 

Comparing Manual and Semi-Automated Landslide Mapping 

Based on Optical Satellite Images from Different Sensors. 

Geosciences 7, 37. https://doi.org/10.3390/geosciences7020037 

Hölbling, D., Friedl, B., Dittrich, J., Cigna, F., Pedersen, G., 

2018. Combined interpretation of optical and SAR data for 

landslide mapping, in: Jemec Auflic, M., Mikos, M., 

Verbovsek, T. (Eds.), Advances in Landslide Research. 

Proceedings of the 3rd Regional Symposium on Landslides the 

Adriatic-Balkan Region. Ljubljana, Slovenia, pp. 11–13. 

 

Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., 

Lang, S., Hölbling, D., Füreder, P., Antolini, F., Cigna, F., 

Casagli, N., Lang, S., 2012. A Semi-Automated Object-Based 

Approach for Landslide Detection Validated by Persistent 

Scatterer Interferometry Measures and Landslide Inventories. 

Remote Sens. 4, 1310–1336. https://doi.org/10.3390/rs4051310 

 

Jensen, J.R., 2015. Introductory Digital Image Processing: A 

Remote Sensing Perspective, 4th ed. Prentice Hall Press, Upper 

Saddle River, NJ, USA. 

 

Jensen, J.R., 2009. Remote Sensing of the Environment: An 

Earth Resource Perspective, 2nd ed, Prentice Hall series in 

Geographic Information Science. Pearson Prentice Hall. 

 

Jenson, J.R., 1983. Urban/Suburban Land Use Analysis, in: 

Colwell, R.N. (Ed.), Manual of Remote Sensing. American 

Society of Photogrammetry, Falls Church, Va., pp. 1571–1666. 

 

Joyce, K.E., Belliss, S.E., Samsonov, S. V., McNeill, S.J., 

Glassey, P.J., 2009. A review of the status of satellite remote 

sensing and image processing techniques for mapping natural 

hazards and disasters. Prog. Phys. Geogr. Earth Environ. 33, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-109-2019 | © Authors 2019. CC BY 4.0 License.

113



 

183–207. https://doi.org/10.1177/0309133309339563 

 

Lee, J.-S., Pottier, E., 2009. Polarimetric Radar Imaging: From 

basics to applications., Polarimetric Radar Imaging: From 

Basics to Applications. CRC press. 

https://doi.org/10.1201/9781420054989 

 

Lu, D., Mausel, P., Brondízio, E., Moran, E., 2004. Change 

detection techniques. Int. J. Remote Sens. 25, 2365–2407. 

https://doi.org/10.1080/0143116031000139863 

 

Pétursson, H., 2018. Large landslides since the middle of the 

last century. 

 

Plank, S., Twele, A., Martinis, S., Plank, S., Twele, A., 

Martinis, S., 2016. Landslide Mapping in Vegetated Areas 

Using Change Detection Based on Optical and Polarimetric 

SAR Data. Remote Sens. 8, 307. 

https://doi.org/10.3390/rs8040307 

 

Sæmundsson, Þ., Morino, C., Helgason, J.K., Conway, S.J., 

Pétursson, H.G., 2018. The triggering factors of the 

Móafellshyrna debris slide in northern Iceland: Intense 

precipitation, earthquake activity and thawing of mountain 

permafrost. Sci. Total Environ. 621, 1163–1175. 

https://doi.org/10.1016/J.SCITOTENV.2017.10.111 

 

Singh, A., 1989. Review Article Digital change detection 

techniques using remotely-sensed data. Int. J. Remote Sens. 10, 

989–1003. https://doi.org/10.1080/01431168908903939 

 

Zuhlke, M., Fomferra, N., Brockmann, C., Peters, M., Veci, L., 

Malik, J., Regner, P., 2015. SNAP (Sentinel Application 

Platform) and the ESA Sentinel 3 Toolbox, in: Sentinel-3 for 

Science Workshop, ESA Special Publication. p. 21. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-109-2019 | © Authors 2019. CC BY 4.0 License.

114




