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ABSTRACT: 

 

Recently, land cover maps created from high resolution satellite images have been used for landscape analysis, in order to understand 

the impact of natural disasters on biodiversity and ecosystems. Conventional land cover classification methods, however, suffer from 

problems with isolated pixels (salt and pepper effect). Filtering can remove the isolated pixels, but can also result in loss of accurate 

information. The purpose of this study is to create a land cover map for landscape analysis of large-scale disturbances caused by the 

Great East Japan Earthquake of 2011, utilizing a Multiple Classifier System (MCS), which allows for reduction of isolated pixels while 

maintaining classification accuracy. RapidEye satellite images covering the Pacific Ocean side of the Tohoku district damaged by the 

earthquake and subsequent tsunami were obtained for 2010, 2011, 2012 and 2016, and land cover classification was implemented using 

individual classifiers and the MCS method. The results showed that the MCS land cover map was able to reduce the number of isolated 

pixels significantly (61-71%) compared with the individual classifiers, while maintaining very high accuracy (0.976-0.986) for all four 

years. These results indicate that MCS land cover maps have a great potential for analyzing disturbances following infrequent large-

scale natural disasters such as earthquakes and tsunami, and for monitoring the process of recovery afterwards. We expect that the 

results of this research will be useful in managing the recovery process in the region disturbed by the Great Eastern Japan Earthquake 

and Tsunami of 2011, and also for developing future Ecosystem-based Disaster Risk Reduction programs for the region. 

 

1. INTRODUCTION 

The occurrence of a natural disasters is increasing year by year, 

causing serious damage worldwide (Ritchie and Roser, 2019). In 

the case of Japan, earthquake-related disasters occur frequently, 

due to high levels of volcanic and seismic activity. For example, 

the Great East Japan Earthquake (magnitude 9.0) and subsequent 

tsunami occurred on March 11, 2011, resulting in 21,000 dead 

and missing persons (Cabinet Office Govermant of Japan, 2015). 

This earthquake and tsunami can be regarded as a typical 

example of a "Large, Infrequent Disturbance" (Tomita et al., 

2014), which not only results in loss of lives, but also results in 

dramatic changes in land cover, and has a major impact on 

biodiversity and ecosystems (Hara, 2014; Hara et al., 2016). 

Satellite remote sensing technology is considered to be an 

effective tool for monitoring natural disasters (Römer et al., 

2012). Analysis of satellite imagery has been utilized to analyze 

changes in land cover before and after the Great East Japan 

Earthquake (Harada et al., 2015; Ishihara and Tadono, 2017); and 

studies using high-resolution satellite images have shown that 

90% (4.2 km2 to 0.5 km2) of coastal forests in the Sendai Bay 

coastal area were destroyed by the tsunami (Zhao et al., 2013). 

As the region slowly recovers, continuous monitoring of the 

changing landscape structure will be essential for conserving 

biodiversity and ecosystems. 

In recent years, machine learning methods have made it possible 

to generate highly accurate land cover maps. These maps, 

however, suffers from a problem known as the salt and pepper 

effect (Blaschke et al., 2000; Zhai et al., 2017). This problem 

involves occurrence of isolated pixels with high local spatial 

heterogeneity between neighboring pixels in the classification 

results. Isolated pixels reduce visibility of the results, and can 

lead to overestimation of analysis results. From the standpoint of 

landscape ecology, this problem reduces the ability to evaluate 

the degree to which the landscape facilitates or impedes 
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movement of plants and animals among resource patches (Taylor 

et al., 1993).  

Filter processing, performed before or after the classification 

process, has been utilized to minimize the effect of isolated pixels 

(Eastman, 2003; Zhu, 2013). This method, however, also 

involves a risk of deleting correct information along with the 

unwanted isolated pixels (Eastman, 2003). Segment-based 

analysis methods have also been proposed as a means for 

preventing isolated pixels (Blaschke et al., 2000). In this 

approach, however, parameter selection is qualitative and 

complex (Neubert et al., 2006). The Multiple Classifier System 

(MCS), has also been utilized for pixel-based land cover 

classification (Du et al., 2012; Kittler et al., 1998). Our previous 

research (Hirayama et al., 2018), has shown that the MCS method 

is effective for reducing the number of isolated pixels that occur 

on land cover maps while retaining classification accuracy.  

The purpose of this study is to utilize the MCS method for 

creating a land cover map for landscape analysis of large-scale 

disturbances caused by the Great East Japan Earthquake of 2011. 

RapidEye satellite images covering the Pacific Ocean side of the 

Tohoku district damaged by the earthquake and subsequent 

tsunami were obtained for 2010 (before the disaster), 2011, 2012 

and 2016, and land cover classification was implemented using 

five individual classifiers and the MCS method. The results for 

the five individual classifiers and the MCS method were 

compared in terms of classification accuracy (Kappa coefficient), 

and occurrence of isolated pixels. 

 

2. DATA AND METHODS 

2.1 Research area  

The target area, shown in Figure 1, covered an area along the 

Pacific Ocean side of Miyagi Prefecture, in the Tohoku Region 

of northern Honshu Island. This area was heavily damaged by the 
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earthquake and subsequent tsunami, and it was placed in the red 

dotted box (Figure 1).  

 

 
Figure 1. Location of study area; The red dotted line shows 

the area for land cover classification. 

 

2.2 Data 

2.2.1 Training and test data 

Ground truth data were prepared based on field survey 

information and visual interpretation using Google Earth images. 

Six land cover classes (forest, shrub/grassland, cropland, urban 

area, waterbody and bare ground) were established. Ground truth 

data were collected at 2,800 points for each class. Of the 2,800 

ground truth points, 2,100 points (75%) were used as training 

data and 700 points (25%) as test data. 

 

2.2.2 Satellite and elevation data 

RapidEye satellite data with spatial resolution of 6.5 m, were 

obtained for 4 April 2010, 13 April 2011, 10 April 2011 and 5 

April 2016. The data consisted of atmosphere reflectance in five 

channels (Blue, Green, Red, Red edge, and Near-infrared). Five 

spectral indices, Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), NDVI red edge 

(NDVIre), Red edge NDVI (ReNDVI), and Normalized 

Difference Water Index (NDWI), were calculated pixel by pixel, 

employing the respective equations noted in Table 1. In addition, 

the research also employed 5.0 m spatial resolution Digital 

Elevation Model (DEM) data, available from the Ministry of 

Land, Infrastructure, Transport and Tourism of Japan, as well as 

land surface slope (in degrees) data, generated from the DEM 

data. 

 
Index Equation Reference 

NDVI 
𝜌nir − 𝜌red

𝜌nir + 𝜌red

 Rouse et al., 
1974 

EVI 2.5
𝜌nir − 𝜌red

𝜌nir + 6.0𝜌red − 7.5𝜌blue + 1.0 
 Huete et al., 

2002 

NDVIre 
𝜌nir − 𝜌rededge

𝜌nir + 𝜌rededge

 Gitelson and 
Merzlyak, 1994 

ReNDVI 
𝜌rededge − 𝜌red

𝜌rededge + 𝜌red

 Sims and 

Gamon, 2002 

NDWI 
𝜌green − 𝜌nir

𝜌green + 𝜌nir

 Mcfeeters, 1996 

Table 1. Equations for calculating spectral indices. ρblue, 

ρgreen, ρred, ρrededge and ρnir refer to the reflectance obtained 

from Blue, Green, Red, Red edge, and Near infrared 

channels of the RapidEye image. 

 

2.3 Generation of land cover maps 

A total of five recently available machine learning classifiers 

(Random forest (RF); (Breiman, 2001), Bagging (BAG); 

(Breiman, 1996), XGBoost (XGB); (Chen and Guestrin, 2016), 

Support vector machine (SVM); (Mountrakis et al., 2011), K-

nearest neighbor (KNN); (Beckmann et al., 2015)) ware used as 

individual classifiers. The parameters for each classifier were 

selected by the highest kappa coefficient value, using a trial and 

error method. For the MCS method, the classification results 

obtained from the five individual machine learning classifiers 

were aggregated by calculating the mode value from the result of 

each classifier (Figure 2). The classification accuracies for the 

individual classifiers and MCS method were evaluated using 

Kappa coefficient; and the numbers of isolated pixels were 

counted to evaluate the reduction of the salt and pepper effect. 

 

 
Figure 2. Flow chart of the classification. 

 

3. RESULTS 

3.1 Accuracy assessment 

Kappa coefficients for the five individual classifiers and the 

MCS method are shown in Table 2. The results show that for all 

four years the classification accuracy was high for all the 

individual classifiers, especially for RF, BAG, and XBG, with 

values ranging from 0.969 to 0.986 in all years; The SVM and 

KNN classifiers were slightly lower, but still above 0.8 for all 

years. The accuracy of the MCS, 0.976-0.986, compared 

favorably with the best of the individual classification results.  

 
  Kappa coefficient 

  2010 2011 2012 2016 

C
la

ss
if

ie
r 

RF 0.982 0.979 0.970 0.977 

BAG 0.976 0.977 0.965 0.969 

XGB 0.986 0.984 0.975 0.980 

SVM 0.895 0.912 0.872 0.860 

KNN 0.863 0.890 0.840 0.834 

MCS 0.986 0.984 0.976 0.984 

Table 2. Kappa coefficient for five individual classifiers and 

MCS aggregation. 

 

3.2 Generation of isolated pixels 

The number of isolated pixels for each of five classifiers and the 

MCS method are shown in Figure 4. Among the isolated 

classifiers, KNN generated the highest number of isolated pixels, 

followed by SVM, BAG, XGB, and RF. The number of isolated 

pixels MCS generated by the MCS method amounted to 61-71% 

of the mode value of individual classifiers for each year. 

 

MCS (mode value) 

RF BAG 

Forest Grass 

XGB 

Forest 

Final result 

Forest 

(Count = 3) 

Grass 

(Count =1) 

Forest Forest 

SVM 

Water 

KNN 

Water 

(Count =1) 

Individual results (classifiers) 
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Figure 3. Number of isolated pixels by land cover class for 

five individual classifiers and MCS aggregation. 

 

3.3 Broad scale land cover maps 

The land cover maps generated by the MCS classification are 

shown in Figure 4. These maps folow the changes in land cover 

from before the earthquake and tsunami (2010) to immediately 

after (2011) to 6 years later (2016). Evem at this broad scale, a 

comparison of the 2010 (4a) and 2011 (4b) maps demonstrates 

that most of the forests stretching along the coast from north to 

south were nearly completely destroyed by the tsunami. In 

addition, vast areas of cropland on the alluvial plain inland from 

the coast changed to bare ground. The two subsequent maps show 

that some of the cropland areas ware already recoverd by 2012 

(4c), and that this recovery was almost complete by 2016 (4d).  

 

 
Figure 4. Land cover maps obtained with MCS aggregation: 

(a) 2010, (b) 2011, (c) 2012, (d) 2016. 

 

3.4  Changes in Coastal Forest  

In order to take a closer look at the disturbance to the coastal 

forest ecosystem caused by the earthquake and tsunami, the MCS 

land cover maps for each of the four years were compared to 

contemporary Google Earth images. The results are shown in 

Figure 5.  

 

 
Figure 5. Detailed map of isolated pixels produced by MCS 

aggregation: (a) to (d) are Google Earth images. (a’) to (d’) 

are landcover maps. 

 

The maps for 2010 (5a, 5a’), before the disaster, show a wide 

belt of pine forest running parallel to the coast. These pines had 

been planted along the raised banks of a central canal. 

Immediately after the disaster (5b, 5b’), almost all the pines have 

disappeared, with the exception of several narrow strips on the 

inland side of the canal. These strips of residual forest remain, 

although slightly diminished, in both the 2012(5c, 5c’) and 2016 
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(5d, 5d’) maps. In addition, the 2016 maps show some recovery 

of forest on the seaward side of the bank. Small patches of forest, 

representing planted groves surrounding farmsteads on the 

alluvial plain, can also be seen in the upper left corner of the pre-

disaster land cover map and Google image. The subsequent maps 

and images indicate that these groves survived the immediate 

disaster, but were later reduced or disappeared. 

 

4. CONCLUSIONS 

The MCS aggregation resulted in a significant reduction (61-

71%) in isolated pixels when compared to the mean of the five 

individual classifiers, while at the same time producing excellent 

kappa coefficients (0.98 to 0.99) that exceeded those of all the 

individual classifiers. These results clearly show that the MCS 

aggregation method is capable of reducing the effect of isolated 

pixels, while at the same time retaining a high classification 

accuracy. In addition, a detailed comparison of land cover maps 

generated by the MCS method with ground truth Google Earth 

images showed that the maps accurately portray changes in land 

cover over a six year period.  

 

5. DISCUSSION 

Classification of high spatial resolution satellite data is a 

promising tool for evaluating and monitoring changes in land 

cover due to large, infrequent disaster such as earthquakes and 

tsunami. Such classifications, however, suffer from problems 

with isolated pixels, which compromise the effectiveness of the 

system for evaluating important ecological variables such as 

connectivity between patches. Extant methods for reducing 

isolated pixels, such as filtering, can result in loss of classification 

accuracy. This study tested the MCS method, which aggregates 

the results of multiple individual classifiers, as a tool for reducing 

isolated pixels. The results showed that the MCS is capable of 

reducing the effect of isolated pixels while maintaining high 

classification accuracy. The results also demonstrated the MCS 

method’s ability to accurately monitor changes in land cover in a 

target area that was heavily damaged by the Great East Japan 

Earthquake and Tsunami of 2011. Hopefully the results of this 

study will prove useful in monitoring future changes in the region, 

and also in designing recovery and restoration projects that 

incorporate habitat connectivity and other ecological concerns. 
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