APPLICATION OF OFF-NADIR SATELLITE IMAGERY IN EARTHQUAKE DAMAGE ASSESSMENT USING OBJECT-BASED HOG FEATURE DESCRIPTOR
Keywords: off-nadir satellite imagery, damage detection, Object-Based Image Analysis, HOG feature descriptor
Abstract. One of the most crutial applications of very-high-resolution (VHR) satellite images is disaster management. In disaster management, time is of great importance. Therefore, it is vital to acquire satellite images as quickly as possible and benefit from automatic change detection to speed up the process. Automatic damage map generation is performed by overlaying the co-registered before and after images of the area of interest and, compring them to highlight the affected infrastructures. For speeding up image capture, satellites tilt their imaging sensor and take images from oblique angles. However, this kind of image acquisition causes severe geometric distortion in the images, which hinders image co-registration in automatic change detection. In this study, a Patch-Wise Co-Registration (PWCR) solution is used. In this algorithm, the before and after images are co-registered in a segment-by-segment manner. From the literature, this algorithm is followed by a spectral comparison to detect changes. However, due to the complicated structure of debris in damage detection applications, spectral comparison methods cannot perform well. In this work, we developed an object-based method using Histogram of Oriented Gradient descriptor to detect damges and compared our results to different existing spectral and textural change detection methods. The algorithm is tested on images from the 2010-Heidi earthquake, captured by DigitalGlobe. The achieved highly accurate results demonstrate the potential of using off-nadir remote sensing images for automatic urban damage detection possibly in early response systems as it speeds up the damage map generation by providing flexibility to utilize images taken from different anlges.