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ABSTRACT: 

 

In a high-rainfall, landslide-prone region in this tropical mountain region, a landslide database was constructed from high resolution 

satellite imagery (HRSI), local reports and field observations. The landslide data was divided into training (80%) and validation sets 

(20%). From the digital elevation model (DEM), scanned maps and HRSI, twelve landslide conditioning factors were derived and 

analysed in a GIS environment: elevation, slope angle, slope aspect, plan curvature, profile curvature, distance to drainage, soil type, 

lithology, distance to fault/lineament, land use/land cover, distance to road and normalized difference vegetation index (NDVI). 

Landslide  susceptibility was then estimated using the frequency ratio method as applied on the training data. The detailed procedure 

is explained herein. The landslide model generated was then evaluated using the validation data set. Results demonstrate that the 

very high, high, moderate, low and very low susceptibility classes included an average of 86%, 7%, 4%, 3% and 1% of the training 

cells, and 84%, 7%, 5%, 3% and 1% of the validation cells, respectively. Success and prediction rates obtained were 90% and 89%, 

respectively. The sound output has discriminated well the landslide prone areas and thus may be used in landslide hazard mitigation 

for local planning. 

 

 

1. INTRODUCTION 

In the Global Landslide Catalog (Kirschbaum et al., 2015), the 

Philippines and its Asian neighbors are considered landslide 

hotspots. Located in the Circum-Pacific Ring of Fire and the 

western North Pacific basin, the Philippines face landslides 

triggered by earthquakes and high rainfall from tropical 

cyclones. The passage of tropical cyclones and/or southwest 

monsoon activity coincide with the annual occurrence of 

rainfall-induced landslides (RIL). Most RIL occur during the 

months May to October. For the years 1951-2013, an annual 

average of 19.4 tropical cyclones cross the Philippine area of 

responsibility (PAR) (Cinco et al., 2016). The greatest number 

hit northern Luzon, making the region recognized locally and 

globally as among the most landslide-prone (Forbes and 

Broadhead, 2011; Kjekstad and Highland, 2009; Nadim et al., 

2006; Petley, 2012; Yumul  et al., 2011). Among the affected 

places is the municipality of Tublay, province of Benguet 

(Figure 1). Predisposing geologic features, together with high 

rainfall (~ 3892 mm per year) and human activities have placed 

the area at high risk for landslides and related hazards (Nolasco-

Javier et al., 2015). Among the most damaging landslide events 

were those during Typhoon Parma in October 2009. 

 

With the availability of recent high-resolution satellite imagery 

and access to GIS and statistical software, a more detailed and 

current landslide susceptibility  map may be generated in a 

process that is expeditious, straightforward,  evidence-based and 

cost-effective (Akgun et al., 2012; Aleotti and Chowdhury, 

1999; Greenbaum, 1995; Magliulo et al., 2009; Metternicht  et 

al., 2005; Pradhan , 2010a; Van Westen et al., 2008).   

 

This study was undertaken with the following objectives: (1) to 

estimate landslide susceptibility using the frequency ratio 

method for an area in mountainous Tublay, Benguet, 

Philippines, and (2) to validate the landslide susceptibility 

model. The output from this work could potentially aid in 

decision making in the aftermath of an extreme rainfall event 

(e.g. provide basis for early warning), conceptualization and 

design of rehabilitation and mitigation measures, and 

environmental impact assessment, land use planning and 

development planning.  The procedure for landslide 

susceptibility modelling could be adapted in other similar 

landslide-prone areas in the region and elsewhere. 

  
Figure 1. Location map of Tublay municipality, Benguet 

province in northern region of the Philippines (shaded area) 

 

2. DATA AND METHODS 

2.1 Preparation of the landslide database 

The interpretation of maps, aerial photographs and satellite 

images, complemented with field surveys and review of 

historical archives are commonly used in generating a landslide 
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inventory. The higher spatial and spectral resolution of HRSI 

and possible manipulation in a GIS environment also allow 

better identification and confirmation of pertinent features in the 

study area, in difficult terrain or even inaccessible areas (Martha 

et al., 2015). Since no recent aerial photographs were available 

for the study area, we thus acquired a cloud-free WorldView-2 

(WV2) image, having multispectral and panchromatic band 

resolutions of 1.85 m and 0.46 m ground sample distance at 

nadir, respectively. The capture dates were December 2009 and 

April 2010. The projection was WGS 1984 UTM Zone 51N. 

 

In satellite images, the occurrence of landslides is suggested by 

breaks in the forest canopy, bare soil, characteristic head and 

flank scarps, flow tracks, and lobate forms of deposits 

(Borghuis  et al., 2007; Intarawichian and Dasananda , 2011; 

Lee and Min , 2001). Research has also confirmed the 

usefulness of the Normalized Difference Vegetation Index 

(NDVI) as an initial criterion for delineating landslides (Barlow  

et al., 2003; Fernández et al., 2008; Martha et al., 2010; Miller  

2013). NDVI values close to 1 indicate the presence of dense 

green vegetation, while values below or close to zero indicate 

sparse or no vegetation. An NDVI thematic map was generated 

using ArcMap. Previous workers using WV2 applied NDVI 

thresholds of 0.2 (Abuzar et al., 2014) and 0.25 (Pu and Landry, 

2012) to distinguish vegetated and non-vegetated areas, the 

latter regarded as landslide candidates. We adopted the 

empirically derived criterion NDVI < 0.3 to quickly identify 

potential landslide areas. The threshold was deemed applicable 

on the basis of visual inspection of the pan-sharpened image and 

field survey data. The near infrared-1 and red bands with 

wavelengths of 770-895 nm and 630-690 nm, respectively 

(DigitalGlobe, 2013), were used in the equation 

 

NDVI = (NIR – R) / (NIR + R)   (Eq. 1). 

 

We also generated band ratios in ENVI 5.1 to highlight the 

textural features of bare ground.  The ratios band 7/ band 2, 

band 5/ band 3, and band 6/ band 4 proved useful when 

displayed as RGB false color composites. Combining 

information from NDVI, band ratios and field data, features 

such as rivers, floodplains, roads, mines, quarries, fallow fields, 

and building areas were excluded from the landslide candidates.  

 

The landslide polygons were then digitized onscreen. The larger 

landslides, i.e., those with areas of more than 900 m2, were 

selected as they were deemed as more damaging. The retained 

landslides were then randomly split into training (80%) and 

validation (20%) data. The landslide polygons were converted 

to a raster grid of 10 m x 10 m grid cells.  

  

2.2 Extraction of landslide conditioning factors 

The chosen landslide conditioning factors were those that, based 

on existing literature, field experience and available data, were 

recognized to influence slope instability. For this study, 

landslide conditioning factors were extracted or generated from 

three major sources of information:  the DEM, scanned maps, 

and HRSI. For this study area, a 10 m x 10 m synthetic aperture 

radar (SAR) DEM was obtained from the Nationwide Disaster 

Risk and Exposure Assessment for Mitigation (DREAM) 

Program of the Department of Science and Technology and the 

University of the Philippines Training Center for Applied 

Geodesy and Photogrammetry. The DEM was obtained through 

Radarsat-2 for the period February 2012 to September 2013. 

The absolute vertical accuracy LE90 is < 10 m. Although 

collected post-Typhoon Parma (October 2009), the SAR DEM 

is regarded as suitable because most of the Parma-triggered 

landslides are active and have shown movement every rainy 

season.  

 

The landslide conditioning factors were generated from 

available data sources (Table 1). The twelve selected factors are 

among those recognized to influence shear stresses, slope 

resistance to instability, subsurface flow velocity, runoff rate 

and water retention (Dahal et al., 2012; Jaafari et al., 2014; 

Manzo et al., 2013; Ozdemir and Altural, 2013; Pourghasemi et 

al., 2013; Pradhan, 2010b; Van Asch et al., 1999; Van Westen, 

1997).  

 

Source 

map/ 

images Data type Resolution Source 

Landslide 

locations  Polygon  2 m x 2 m 

World View2 

image 

DEM Grid 

10 m x 10 

m 

Disaster Risk 

Exposure and 

Assessment for 

Mitigation 

(DREAM) project 

Geological 

map Polygon 1:50000 

Mines and 

Geosciences 

Bureau 

Soil map Polygon 1:50000 

Bureau of Soils 

and Water 

Management 

Other 

factor 

maps 

Grid and 

Polygon-

Grid 

2 m x 2m 

and 30 m 

x 30 m 

WV2 image and 

Landsat 5  

 

Table 1. Spatial data layers used in this study 

 

Six landslide conditioning factors were derived from the DEM 

using ArcMap Spatial Analyst: elevation, slope angle, slope 

aspect, plan curvature, profile curvature and distance to 

drainage. Three factors were derived from scanned maps: (1) 

lithology, (2) soil type, and (3) distance to fault/ lineament. 

From the HRSI, three factors were derived: (1) land use/ land 

cover (LULC) (HRSI data was complemented by Landsat data 

prior to landslide event), (2) distance to road, and (3) NDVI.  

 

The Kolmogorov-Smirnov (K-S) test for normality was applied 

to each of the factors using SPSS v.22. For reclassification 

purposes, Akgun et al. (2012) recommended using either the 

equal interval or standard deviation classifier when data are 

normally distributed and either the quantile or natural breaks 

method when data distribution is skewed. The reclassification of 

variables was then achieved based on the distribution type, 

expert knowledge and field observations. All requisite 

calculations were performed in ArcMap v.10.2. All factors were 

converted to a raster grid of 10 m x 10 m cells. 

 

2.3 Computation of frequency ratio 

In the FR approach, the goal is to reveal the correlation between 

landslide locations and the factors in the study area. Each 

thematic map is thus matched with the landslide training data to 

obtain the FR. The FR is computed from the ratio of landslide 

occurrence percentage to area coverage percentage for a given 

factor class, or simply the landslide occurrence area to the total 

area (Angillieri, 2015; Hong et al., 2015; Meten et al., 2015; 

Ramesh and Anbazhagan, 2015; Regmi et al., 2014). The values 

obtained represent the correlation between each factor class and 

landslide probability. If the FR ratio is greater than 1, then the 
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relationship between landslide occurrence and the factor class is 

strong. If the ratio is less than 1, then it is regarded as weak.  

 

The frequency ratio of each factor class i (FR i) was then 

computed as: 

   
(Eq. 2) 

 

where  is the number of cells with landslides in factor 

class i 

 

Ʃ Npix (Si) is the total number of cells with landslides 

 

is the total number of cells (i.e., with and without 

landslides) in factor class i 

 

Ʃ Npix (Ni) is the total number of cells (i.e., with and without 

landslides) 

 

The frequency ratio computations were undertaken in Excel. 

The landslide susceptibility index (LSI) is then computed as  

 

LSI = (j =1 to n), n is total number of factors (Eq. 3). 

 

Higher LSI values imply greater tendencies for landsliding. The 

data distribution was examined prior to the classification of LSI 

values into five categories of landslide susceptibility (very low, 

low, moderate, high, very high). With SPSS v.22, the 

Kolmogorov-Smirnov test was applied to test for normality. The 

choice of classifier was guided by the findings of Akgun et al. 

(2012). The classifier that showed better model sufficiency was 

selected.  

 

2.4 Model evaluation 

One measure of model sufficiency is obtained by estimating the 

number of landslide cells within various classes of 

susceptibility. Acceptable model sufficiency is observed when 

the number of landslide cells is nil or low in the low classes, 

increases from low to high classes, and is highest in the high-

end classes (Tsangaratos et al., 2016). In addition, the landslide 

susceptibility map was verified by comparing the susceptibility 

map with training data that were used for building the models 

and then with the validation data. The purpose was to evaluate 

the fitness and predictability of the model based on the training 

and validation data, respectively.  The method required the 

construction of a specific rate curve that explains the percentage 

of known landslides that fall into each defined level of LSI 

values and displays as a cumulative frequency diagram. The LSI 

values in the FR model were arranged in descending order. The 

ordered cell values were then divided into 100 equal interval 

classes.  The lower LSI limit values for each 1%-interval class 

were then recorded. The LSI values for each cell in the training 

and validation data sets were also arranged in descending order. 

The cumulative frequency of the LSI values above each of the 

recorded class limits was then calculated. The areas under the 

curve (AUC) of the rate curves were then calculated in Excel 

using the trapezoid method (Choi et al., 2012; Chung and 

Fabbri, 2003; Intarawichian and Dasananda, 2011; Lee and 

Pradhan , 2007). The results were converted to percentages to 

obtain success and prediction accuracy or rates (SR and PR, 

respectively).  

 

The workflow for undertaking LSA is summarized in Figure 2. 

 
Figure 2. General work flow for landslide susceptibility 

assessment using frequency ratio 

 

3. RESULTS 

3.1 Delineated landslides 

Initially, 853 landslides were delineated. The smallest and 

largest in size were 20 and 70,215 m2, respectively.  Most were 

of the slide and debris flow types.  Selecting the large 

landslides, i.e., those with areas of more than 900 square meters, 

305 landslides were retained for modelling and validation.  

These landslides covered 2.8% of the 40.5 km2 study area.  For 

training and validation data sets, 244 landslides (80%) and 61 

landslides (20%) were used, respectively. Training data 

included 8713 cells and validation data included 2713 cells 

(Figure 3). Non-landslide cells totalled 393,169. 

 
 

Figure 3. Three hundred five landslides (with area > 900 m2) 

used in modelling landslide susceptibility 

 

3.2 Landslide conditioning factors and frequency ratio 

Based on the K-S test, the distribution of the twelve landslide 

conditioning factors showed significant difference (p < 0.05)  
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from normality. The factors with continuous values were thus. 

reclassified using the natural breaks method. The results of the 

FR method are summarized in Table 2a-2b. 

 

Table 2a. Landslide conditioning factors, factor class and 

frequency ratio (FR). High FR (>1.2) in bold 

 

 

Table 2b. Landslide conditioning factors, factor class and 

frequency ratio (FR). High FR (>1.2) in bold 

 

3.3 Landslide susceptibility 

Following Akgun et al. (2012b), the natural breaks and quantile 

classification methods were applied on the landslide 

susceptibility indices obtained.. Since the quantile classifier 

showed better model sufficiency, it was chosen as the classifier 

for LSI. In the resulting model, the high and very high 

susceptibility classes covered 40% of the area. The moderate, 

low and very low susceptibility classes accounted for 20% each. 

The landslide susceptibility model is shown in Figure 3. 

 

There appears a prominent band of low and very low landslide 

susceptibility areas in the west. To the east of this band are 

moderate to very high-susceptibility areas covering 

approximately two-thirds of the area. The high-susceptibility 

areas are interrupted by low-susceptibility corridors coincident 

with ridges or roads.  

Factors and factor 

classes 

Number 

of 

pixels 

in class 

Number 

of pixels 

with 

landslides 

Class 

area 

coverage 

% 

Landslide 

area 

coverage 

% FR 

Elevation (meters 

above sea level)      
800-1000 336 0 0.08 0.00 0.00 

1000-1200 68811 1151 17.01 15.77 0.93 

1200-1400 144847 2027 35.80 27.77 0.78 

1400-1600 116292 3089 28.74 42.32 1.47 

1600-1800 73328 980 18.12 13.43 0.74 

1800-2000 981 52 0.24 0.71 2.94 

Slope (degree)      
0-10 32707 195 8.08 2.67 0.33 

10-20 123379 1840 30.49 25.21 0.83 

20-30 164446 3573 40.64 48.95 1.20 

30-40 75832 1510 18.74 20.69 1.10 

40-50 8025 179 1.98 2.45 1.24 

50-60 206 2 0.05 0.03 0.54 

Aspect      

Flat 168 0 0.04 0.00 0.00 

North 36937 268 9.13 3.67 0.40 

Northeast 34677 269 8.57 3.69 0.43 

East 44123 980 10.91 13.43 1.23 

Southeast 64046 2006 15.83 27.48 1.74 

South 60760 1631 15.02 22.35 1.49 

Southwest 50081 992 12.38 13.59 1.10 

West 64089 910 15.84 12.47 0.79 

Northwest 49714 243 12.29 3.33 0.27 

Plan curvature      

Sideward concave 178111 3680 44.02 50.42 1.15 

Linear 43794 694 10.82 9.51 0.88 

Sideward convex 182690 2925 45.15 40.07 0.89 

Profile curvature      

Upward convex 190967 3312 47.20 45.38 0.96 

Linear 28623 443 7.07 6.07 0.86 

Upward concave 185005 3544 45.73 48.55 1.06 

Distance to 

drainage (meter)      

0-100 90173 2000 22.29 27.40 1.23 

100-200 83610 1457 20.67 19.96 0.97 

200-300 78958 1093 19.52 14.97 0.77 

300-400 65929 1114 16.30 15.26 0.94 

400-500 47162 891 11.66 12.21 1.05 

>500 38763 744 9.58 10.19 1.06 

Soil       

Rough 

mountainous land 21148 90 5.23 1.23 0.24 

Ambassador silt 

loam 304293 6966 75.21 95.44 1.27 

Puguis gravelly 

loam 39269 67 9.71 0.92 0.09 

Halsema clay 

loam 39885 176 9.86 2.41 0.24 

Factors and factor 

classes 

Number 

of 

pixels 

in class 

Number 

of pixels 

with 

landslides 

Class 

area 

coverage 

% 

Landslide 

area 

coverage 

% FR 

Lithology      

Balatoc dacite 4748 17 1.17 0.23 0.20 

Black Mountain 

quartz diorite 49108 1093 12.14 14.97 1.23 

Central Cordillera 

Diorite Complex 128740 2412 31.82 33.05 1.04 

Zigzag Formation 53756 46 13.29 0.63 0.05 

Pugo Formation 168243 3731 41.58 51.12 1.23 

Distance to 

lineament (meter)      

0-100 54779 1290 13.54 17.67 1.31 

100-200 51700 1385 12.78 18.98 1.48 

200-300 49866 933 12.32 12.78 1.04 

300-400 47344 735 11.70 10.07 0.86 

400-500 43357 722 10.72 9.89 0.92 

> 500 157549 2234 38.94 30.61 0.79 

Land use/cover      

Dense vegetation 127907 3098 31.61 42.44 1.34 

Bare ground 24118 344 5.96 4.71 0.79 

Sparse vegetation 215393 3793 53.24 51.97 0.98 

Drainage 16268 0 4.02 0.00 0.00 

House/building 9958 0 2.46 0.00 0.00 

Road 7434 64 1.84 0.88 0.48 

Mine or quarry 3517 0 0.87 0.00 0.00 

Distance to road 

(meter)      

0-100  103050 1406 25.47 19.26 0.76 

100-200 73746 1406 18.23 19.26 1.06 

200-300 58278 1019 14.40 13.96 0.97 

300-400 43776 771 10.82 10.56 0.98 

400-500 31893 616 7.88 8.44 1.07 

>500 93852 2081 23.20 28.51 1.23 

NDVI      

-0.210-0.227 24707 371 6.11 50.84 8.33 

0.227-0.377 25853 1902 6.39 26.06 4.08 

0.377-0.503 50764 758 12.55 10.38 0.83 

0.503-0.607 82798 498 20.46 6.82 0.33 

0.607-0.696 130538 308 32.26 4.22 0.13 

0.696-0.996 89935 122 22.23 1.67 0.08 
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Figure 4. Landslide susceptibility map for southern Tublay, 

Benguet province 

 

3.4 Model Sufficiency 

Using all factor sets, the very high, high, moderate, low and 

very low classes included an average of 86%, 7%, 4%, 3% and 

1% of the training cells, and 84%, 7%, 5%, 3% and 1% of the 

validation cells, respectively (Figure 5). 

 

 
 

Figure 5. Histograms showing distribution of training (red) and 

validation (green) data in landslide susceptibility classes 

 

The landslide susceptibility model indicates that 10% (100%-

90% classes) and 20% (100%-80% classes) of the most 

susceptible in the area contain an average of 76% and 86%, 

respectively, of the training data (Figure 6). The model can thus 

be regarded as a good fit to the training data. Moreover, the 

model indicates that 10% and 20% of the most susceptible areas 

contain 73% and 82%, respectively, of the validation data set. 

The predictive value of the model can thus be regarded as good. 

The SR and PR average 90% and 89%, respectively. 

 

4. DISCUSSION 

The use of the criterion NDVI < 0.3 and band ratios proved 

useful in identifying candidate landslides. There was general 

agreement between the candidate landslides identified from 

HRSI and field observations. Results from image processing 

complemented with fieldwork data facilitated the process of 

building the landslide inventory.  

 

For the study site, higher FR (>1.2), which correlates with 

higher landslide occurrence, are observed in the following 

factor classes: NDVI is below 0.38, elevation is 1400-1600 m 

and 1800-2000 m, slope is 20-30 degrees and 40-50 degrees, 

aspect is  east, southeast and south, distance to drainage is 0-100 

m, soil is Ambassador silt loam, lithology is Black Mountain 

quartz diorite porphyry and Pugo Formation, distance to 

fault/lineament is < 200 m, distance to road is > 500 m, LULC 

is dense vegetation. The five most influential factor classes (i.e. 

with highest FR) were NDVI <0.38, elevation is 1800-2000 m, 

aspect is southeast, dense vegetation and distance to lineament 

is < 200 m.. The high FR values coincide with steeper slopes, 

drainages and gullies, vegetated and bare surface, and highly 

weathered soil and rocks. Except for the occurrence of dense 

vegetation, most of the stated conditions are known to promote 

slope instability by increasing shear stresses and/or reducing 

shear strength (Crozier, 1986; Petley, 2010). That landslides 

tended to occur in the south- and southeast-facing slopes - 

which are the predominant slope directions - may be the effect 

of the near north-south oriented morphology of the mineralized 

catchments and the general southward flow direction of stream 

flow. Based on Table 2a above, the plan and profile curvature 

factors did not appear to have influence on slope instability. 

 

 
 

Figure 6. Success (filled circle) and Prediction rates (open 

circle) of frequency ratio model using twelve landslide 

conditioning factors derived from DEM, map and high-

resolution satellite imagery 

 

Among the map factors, the high FR values for the Ambassador 

silt loam and Black Mountain quartz diorite porphyry and Pugo 

Formation lithology classes are consistent with field 

observations. The higher FR in areas closer to lineaments/ faults 

(< 200 m) supports the general tendency of landslides to occur 

closer to fractures. 

 

Among the LULC classes, the highest FR (1.3) is observed in 

the dense vegetation class. This is contrary to expectation 

because root systems of vegetation hold regolith, generally 

promoting slope stability (Wu and Swanston, 1980). However, 

along slopes, vegetation can slow runoff allowing more water to 

infiltrate into the subsurface, saturating the soil quicker and to 

greater depths. Moreover, it is also possible that during and 

immediately after a high rainfall event, the added weight of 

water-saturated regolith and vegetation elevates shear stresses 

and instigates instability. In the field site, the dense vegetation 

areas are located in midslopes subjacent to drainage divides, 

agricultural lands, roads, mines and quarries. It is from the latter 

locations at higher elevation that landslides may originate and 

gain momentum to cascade down to vegetated ground 

downslope. It is also possible that in areas classified as having 

dense vegetation, some bare or sparsely vegetated ground is 

present, and it is from the latter where landslides initially trigger 

and eventually destabilize the adjacent vegetated areas. Greater 

N 
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landslide occurrence may thus be observed in the dense 

vegetation class. The low FR (0.98) observed in the sparse 

vegetation class seems to imply a lesser landslide occurrence. It 

is possible that because only larger landslides were included in 

the training set, the omission of smaller landslides likely 

resulted in a more conservative number of landslides, thus 

reducing the FR. For the distance to road factor, a possible 

reason why the 0-200 meter classes showed low FR could be 

attributed to the regular slope reduction/ maintenance work or 

the presence of slope protection infrastructure including grouted 

slopes, culverts, retaining walls, drainage canals and the like. 

Among all factors, the highest FR (8.3 and 4.1) observed in the 

lowest NDVI classes (< 0.38) indicate that low NDVI is most 

strongly associated with landslide occurrence. The low NDVI is 

observed not only in landslide areas but also in main river 

drainage, floodplains, built-up areas, mines and quarries. While 

it is possible that landslide material from upslope can 

accumulate in river drainage and floodplain, it is possible that 

such deposits are worked by normal river flow, especially 

during the waning stages of high discharge. One evident 

limitation of the models apparently is the inclusion of river 

drainages and floodplains (consisting mostly of sand and gravel) 

in the high and very high susceptibility zones (Figure 4).  

Because the model is strongly affected by NDVI, the low NDVI 

of these two features are similar to the low NDVI signatures of 

“true” landslides. How to better discriminate them could be a 

topic for further study.  

 

5. CONCLUSION 

The results confirm that the FR method applied on the twelve 

factors can adequately model the landslide susceptibility in the 

area. Applying quantile classification of LSI values, the number 

of training and validation landslides is lower in low-

susceptibility areas, increases with increasing susceptibility 

classes, and is highest (more than 80%) in the high and very 

high categories. 

 

The generated landslide susceptibility model can be regarded as 

sound and suitable for guiding decisions pertinent to landslide 

hazard mitigation at the municipality level. The methodology 

adopted here is expeditious, straightforward, evidence-based 

and cost-effective for local planning purposes. It provides a 

sound estimate of the landslide susceptibility and hence can be 

readily replicated in similar landslide prone areas. 
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