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ABSTRACT: 

 

Combining pre-disaster optical and post-disaster synthetic aperture radar (SAR) data is regarded as desirable for timely damage 

assessment, which is essential for the prompt rescue operation. Due to the extreme differences between the two data, however, this 

combination has not been practically used in the previous research. In this paper, a method to assess the various types of damage 

caused by disasters using the desirable data combination, particularly pre-disaster very high resolution optical data and post-disaster 

polarimetric SAR data. The proposed method is a rule-based classification, and uses diverse components derived from the two data 

such as normalized difference vegetation index, polarization orientation angle, SPAN, and entropy. The proposed method was 

applied to the case study of the 2011 tsunami in Japan. The experimental results demonstrated the potential of the proposed method 

to assesses the types of tsunami-induced damage in urban and vegetated areas. The achievement in this paper is expected to facilitate 

efficient and fast disaster-induced complex damage assessment. 
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1. INTRODUCTION 

The use of satellite imagery has emerged as a valuable source of 

information for rapid rescue operation because disaster-

locations are usually not accessible (Gueguen and Hamid, 2015). 

Numerous methods have been developed to assess disaster-

induced damage by employing satellite images. Most of them 

were based on the change detection approach, which compares 

the post-disaster satellite imagery to the pre-disaster satellite 

imagery and considers the changes between them as damages. 

The previous methods tend to use the similar types of the pre 

and the post-disaster images such as both images acquired by 

VHR optical sensors (Gueguen and Hamid, 2015; Mansouri and 

Hamednia, 2015) or both by SAR sensors (Arciniegas et al., 

2007; Chen and Sato, 2013; Park et al., 2013). Relatively fewer 

methods (Brunner et al., 2015; Plank et al., 2016) fused the 

different types of images. It is because that the inherent 

differences from the different radiometric and geometric 

characteristics between sensors are incorrectly considered as 

damage induced by disasters, and it is, therefore, difficult to 

accurately assess the damage. 

The method fusing the different types of images is essential in 

terms of the achieving timely damage assessment for the prompt 

rescue operation, because the immediate acquisition of the post-

disaster image, of which type is similar to the pre-disaster image, 

is practically difficult. Particularly, an optical sensor, which is 

sensitive to the weather and illumination conditions, is limited 

to be operated immediately after the disasters occur. On the 

contrary, a synthetic aperture radar (SAR) is appropriate for 

disaster sites due to its relative insensitivity to those conditions. 

However, less abundant pre-disaster SAR images exist. In this 

respect, the pre-disaster optical data and the post-disaster SAR 

data are regarded as a desirable data combination for rapid 

damage assessment (Brunner et al., 2015). 

Recent disasters usually occur over vast areas and result in 

complex damage in various land cover types. The complex 

damage can be efficiently detected by using fully polarimetric 

SAR (PolSAR) data since it provides sufficient information of 

ground objects and allows more useful results with its 

additional polarization scattering mechanism compared to a 

single polarization mode. Consequently, there has been 

increasing research employing PolSAR for damage 

investigation (Chen and Sato, 2013; Park et al., 2013; Plank et 

al., 2016). 

This paper is aimed at developing a novel method to assess 

complex damage using the desirable data combination, in 

particular, the pre-disaster VHR optical data and the post-

disaster PolSAR data. Damage assessment using the two data is 

a challenging task due to their extreme radiometric and 

geometric differences. A rule-based classification is established 

in this paper to investigate the complex damage. The proposed 

method can detect three types of the damage: (1) Physically 

destroyed buildings, (2) Inundated croplands, (3) Destroyed 

windbreak forest. In order to achieve the efficient damage 

investigation result, the proposed method uses various 

components derived from optical and PolSAR data such as 

normalized difference vegetation index (NDVI), polarization 

orientation angle (POA), SPAN, and entropy. 

The rest of this paper is organized as follows. In Section 2, we 

define the damage types in the complex damage, particularly 

induced by tsunamis. The rule-based classification for damage 

assessment of each type is described in detail in Section 3. In 

Section 4, we evaluate the performance of the proposed method 

using KOMPSAT-2 data and ALOS/PALSAR-1 data acquired 

before and after the 2011 tsunami in Japan, respectively. Finally, 

we conclude the paper in Section 5. 
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2. COMPLEX DAMAGE CAUSED BY TSUNAMI 

The differences between the pre-disaster VHR optical data and 

the post-disaster fully PolSAR data can be classified in terms of 

the causes such as radiometric and geometric differences 

between the sensors, seasonal differences usually appearing in 

vegetated areas, and disaster-induced differences. Therefore, the 

proposed method in this paper should be able to distinguish the 

disaster-induced differences from others. There is no definitive 

comparison method to define all kinds of differences between 

optical and PolSAR data. Furthermore, each polarimetric 

parameters derived from the PolSAR data is specialized to 

monitor different ground objects. Therefore, the complex 

damage investigation is individually designed according to the 

damage types. 

A tsunami focused in this paper causes two typical types of 

damage, inundation and destruction. Since the restoration of 

tsunami damage is dissimilar according to land covers, we 

analysis the two typical types of damage in terms of land cover 

types. 

Detecting inundated areas is a relatively straightforward task for 

detecting destroyed areas since the water bodies are normally 

distinguishable in both optical and SAR images. The 

backscattering signals of water surfaces is lower than those of 

other land covers, and numerous methods have been developed 

to detect water bodies from the two images (Nath and Deb, 

2010; Hong et al., 2015). By using such methods, the simplest 

way to detect inundated areas is to compare the detected water 

bodies derived from the two data. 

The torrent of water destroys diverse ground objects in the 

catastrophic site. Generally, destruction in urban areas is 

directly related to human casualties. In this respect, we 

investigate the destroyed buildings in detail. Furthermore, a 

windbreak forest located along a seashore, which is another 

object possibly destroyed by the tsunami water, is also 

investigated. 

 

3. METHODOLOGY 

To directly compare between optical and SAR data, the methods 

based on simulation have been proposed (Wang and Jin, 2012; 

Brunner et al., 2015). Although the sufficient number of the 

polarimetric parameters of PolSAR data, few parameters are 

comparable with the parameters possibly obtained from the 

optical data. Therefore, a rule-based classification is 

alternatively adopted to assess the complex damage by the 

tsunami. 

 

3.1 The components derived from the data 

3.1.1 Components of the VHR optical data: Before 

describing the rule-based classification in detail, the 

components in this paper are briefly introduced. Two 

components are derived from the VHR optical data, an NDVI 

and a POA. The former is a well-known index and has been 

widely used to monitor the condition of the vegetation and to 

classify the land covers. The actual values of the NDVI should 

be obtained after the radiometric calibration; however, the 

radiometric calibration is quite complicated and does not 

critically affect the damage assessment results. Therefore, the 

NDVI is calculated using digital number (DN) of the near-

infrared (NIR) and red bands of the VHR optical data without 

any radiometric calibration. 
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Because the POA is the unique component of PolSAR data, we 

simulated it from VHR optical data by the method in Jung et al. 

(2018). They proposed the entire process of simulation POAs 

using VHR optical data with lines. The POA is originally 

related to the slopes of a terrain and radar look angles, and the 

walls of buildings affect the POAs in urban areas. Therefore, the 

POA in urban areas can be calculated once the building 

orientation angle defined. 

 

3.1.2 Components of the PolSAR data: PolSAR data is 

originally represented using the scattering matrix S (Lee et al., 

2000). The coherency matrix T, which derived from S based on 

the reciprocity condition (Shv≈Svh), is defined as: 
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where  indicates averaging and k is a Pauli scattering vector. 

The superscripts * and T denote the complex conjugate and the 

transpose, respectively. By using the component of T, the used 

component derived from the PolSAR data can be calculated. A 

SPAN image represents the total scattering power of PolSAR 

data as Equation (3). 

 

SPAN=T11+T22+T33    (3) 

 

The POA  is calculated as follows (Lee et al., 2000): 
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where Re(T23) is the real part of T23 and nπ (n=0, 1) is 

necessary to prevent the coherency matrix from being rotated 

toward the wrong axis (Chen et al., 2013). 

An entropy (H) is a useful descriptor of the randomness of the 

backscattering signals. If the entropy is low, one dominant 

scattering exists among the surface, double-bounce, and volume 

scattering. The maximum value of entropy is 1 and indicates 

that the backscattering is totally random. 
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P  and i  are the eigenvalues of T (Lee and 

Pottier, 2009). 

 

3.2 Method to assess the complex damage 

To assess the complex damage, we first extract the candidate 

areas of three land covers-vegetated areas, water surfaces, and 

forests. In consideration of the reflectance characteristic of each 

land cover, the candidates are classified with the Otsu threshold 

method (Otsu, 1979). Table 1 shows the rules of the 

classification of three land covers. 

With the extracted candidate areas using these rules, the 

damaged areas are extracted. The inundated croplands are the 

areas which were the vegetated candidates in the pre-disaster 

optical image and became the water surfaces in post-disaster
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Land cover Rule Reflectance characteristic 

Vegetation NDVI ≥ threshold 
Vegetated areas such as croplands, pastures, and forests, have higher values of the 

NDVI than those of other land covers. 

Water SPAN ≤ threshold 
Water surfaces without winds have low brightness values in both optical data and SAR 

data 

Forest Entropy ≥ threshold 

The backscattering signals of forests are the mixtures of various scattering mechanism 

reflected from numerous objects including grounds, trunks, branches, etc. 

Consequently, the randomness of the backscattering from the forests necessarily 

increases and results in high value of the entropy. 

Table 1. Classification rule of each land cover. Each threshold is calculated by Otsu method. 

 PolSAR image. The other inundated land cover can be defined 

similarly. The damaged forest is the areas with high values of 

the NDVI and the SPAN, but low values of the entropy. These 

two types of tsunami-induced damage cannot be quantified their 

severities because the components used in this paper do not 

have any quantitative relationship with each other. 

Unlike the above two types of damage, the damage level of the 

destroyed buildings can be quantitatively determined, as shown 

in Chen and Sato (2013) and Jung et al. (2018). We adopt the 

indicator D as Eq. (6) to generate a building damage level map 

(Jung et al., 2018). The higher value of the D is, the more 

severely destroyed buildings exist. 
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where ,dir prer  and ,dir postr are the directional dispersions of pre- 

and post-disaster POAs. Since this approach cannot avoid the 

errors from forests where the POAs fluctuate, the vegetated 

areas are eliminated from the generated building damage level 

map. 

 

4. EXPERIMENTAL RESULTS 

4.1 Study site and data description 

The study site is located in Ishinomaki of Miyagi prefecture, 

reported as severely damaged by the 2011 tsunami induced by 

an earthquake of magnitude 9.0 (National Police Agency, 2018). 

As shown in Fig. 1(a), the catastrophic site is composed of 

various land covers, including urban, croplands, and forests. 

Table 2 shows the data used for assessing the damage caused by 

the 2011 Japan tsunami by comparing the pre-tsunami VHR 

optical data and post-tsunami PolSAR data. The VHR optical 

data was acquired on October 1, 2009, by KOMPSAT-2 (Fig. 

1(a)).  The fully PolSAR data was acquired on April 8, 2011, by 

the ALOS/PALSAR-1 (Fig. 1(b)). Some clouds cover several 

areas in the KOMPSAT-2 image but do not cover the areas near 

the seashore, which are mainly damaged by the tsunami. 

 

Data Type VHR optical data PolSAR 

Sensor KOMPSAT-2 ALOS/PALSAR-1 

Acquired Data October 1, 2009 April 8, 2011 

Incidence Angle - 23.836° 

Spatial 

Resolution 

1m 

(Panchromatic) 

4m 

(Multi-spectral) 

3.43m 

(Azimuth) 

23.18m 

(Ground-range) 

Table 2. Description of the remote sensing data 

 
(a) 

 
(b) 

Figure 1. (a) False colour (NIR-G-B) image of the KOMPSAT-

2 data; (b) Pauli RGB image of the ALOS/PALSAR-1 data. 

The two data were indirectly registered by the same approach in 

Jung et al. (2018). The single-look ALOS/PALSAR-1 data was 

first pre-processed. The PolSAR data was seven-multi-looked in 

the azimuth direction and geocoded to the map projection of 

KOMPSAT-2 data. Afterwards, the transformation model was 

calculated by the normalized mutual information (Studholme et 

al., 1999) between the panchromatic image of the VHR optical 

data and the SPAN image of the pre-processed PolSAR data, 

and applied to every component derived from the two data. 

The performance of the proposed approach to assess physically 

destroyed buildings was examined using the building damage 

map of the 2011 Japan tsunami visually interpreted using aerial 

photos, as shown in Fig. 2(a) (WorldMap, 2018). Since no 

appropriate reference data exist in terms of the vegetated areas, 

we additionally referred the GoogleEarth image acquired on 

April 6, 2011, two days before the PolSAR data obtained. It 

was predicted that the inundated vegetated areas and damaged 

forests existed near the acquisition day of the PolSAR data (Fig. 

2 (a) and (b)). However, the urban areas were not inundated. 
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(a) 

 
(b)   (c) 

Figure 2. (a) Building damage map. The regions of interest 

(ROIs) for the validation are labelled as A1 to A5, B, C, and D; 

(b) The GoogleEarth image of the inundated cropland, B; and 

(c) The GoogleEarth image of the damaged forest (windbreak), 

C. 

4.2 Investigation of the complex da mage 

4.2.1 Components derived from two data: Figure 3 shows 

the components derived from the KOMPSAT-2 and 

ALOS/PALSAR-1 data as expected in Section 3.2. It is found 

that the method proposed in Jung et al. (2018) well simulated 

POAs of the urban areas as compared to PolSAR POAs. Even 

though the absence of the radiometric calibration, the vegetated 

areas, including the croplands and forests, show the high values 

of the NDVI. In terms of the PolSAR data, water bodies have 

low values of the SPAN. The values of the entropy are high 

over the forest areas, of which backscattering mechanism is 

complicated. 

 

4.2.2 Investigation of the vegetated areas: The rule-based 

classification generated the damage map of the vegetated areas, 

as shown in Fig. 4. Due to the absence of the appropriate 

reference data for the damaged vegetated areas, we visually 

evaluated the result with the GoogleEarth image. The actual 

inundated area, B, was extracted as the inundated croplands by 

the proposed method. The subimage at the bottom right corner 

of Fig. 4 is the magnified image of the windbreak forest. It 

shows that the tsunami destroyed the windbreak forests. The 

small surface of the detected damaged windbreak forests is 

partly reasonable as considered that the windbreak forest in C 

was not severely damaged, as shown in Fig. 2(c). 

Meanwhile, the errors in D demonstrated that the proposed 

method could not distinguish the temporal changes in the 

vegetated areas from the changes due to the damage. The 

vegetated areas were bare soil near the acquisition date of the 

PolSAR data because it was before the planting season. 

Although the vegetated areas in D were not inundated or 

destroyed at that moment, they were determined as the damaged 

vegetated areas. The additional information on other 

components possibly derived from pre-tsunami VHR optical 

data and post-tsunami PolSAR data can solve this limitation. 

 

 

 
(a)   (b) 

 
(c)   (d) 

 
   (e) 

Figure 3. Derived components: (a) Simulated POAs; (b) 

PolSAR POAs; (c) NDVI; (d) SPAN; and (e) Entropy. 

 

Figure 4. Damage map of the vegetated areas. 

4.2.3 Investigation of the destroyed buildings: Figure 5 

shows the damage level map of the destroyed buildings in the 

study site. The noticeable areas with the high values of the 

index D are the areas, where the high and low damaged 

buildings exist according to the reference map in Fig. 2(a). 

 

 

 

Figure 5. Damage level map of destroyed buildings 

The mean values of the ROIs, A1 to A5, were calculated as 

Table 3 for quantitative evaluation. The mean values tend to 

increase as the damage level increases. It indicates that the 

index D is the useful descriptor of the severity of building 
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damage. Furthermore, the forest areas, which usually have high 

values of the D, are efficiently eliminated by the proposed 

method. Notably, the mean values of the forest in A5 are 

remarkably decreasing from 0.331 to 0.011 after eliminating 

process. According to the values in Table 3, the value of A5, 

0.011, is interpreted as undamaged areas. 

 

ROIs The mean value Damage level 

A1 0.442 high 

A2 0.228 medium 

A3 0.120 low 

A4 0.004 undamaged 

A5 0.013 (forest) 

Table 3. The mean values of the D index of the ROI A1 to A5. 

5. CONCLUSION 

This paper has proposed a novel method to assess the complex 

damage caused by tsunami based on the rule-based 

classification using the pre-tsunami VHR optical data and post-

tsunami PolSAR data. The proposed method can detect three 

major types of damage - the inundated croplands, damaged 

forest, and physically destroyed buildings by using various 

components derived from the two data. The experimental results 

demonstrated the potential of the proposed method to assesses 

the types of tsunami-induced damage in urban and vegetated 

areas. Although the proposed method is focused on the tsunami 

induced image, it can be applied to the damage induced by other 

types of disasters unless the radiometric characteristics are 

different. The achievement in this paper is expected to increase 

the availability of satellite imagery for prompt disaster-induced 

damage investigation. 
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