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ABSTRACT: 

 

Road traffic infrastructure plays a key role in emergency management. It allows to evacuate people from the affected area in the shortest 

possible time, as well as to organize rapid emergency response. However, disasters often cause the destruction of roads, railways and 

pedestrian routes, which can significantly affect the evacuation plan and availability of facilities for emergency services, which 

increases the response time and thereby increases the losses. Therefore, it is very important to quickly provide emergency services 

with necessary post-disaster maps, created on the principles of rapid mapping. Change detection based on geospatial data before and 

after damage can make rapid and automatic assessment possible with reasonable accuracy and speed. This research proposes a new 

approach for detecting damage and detecting the state and availability of the road network based on the satellite imagery data, 

unmanned aerial vehicles (UAVs) and SAR using various methods of image analysis. We also provided an assessment of the resulting 

combined mathematical model based on neural networks and spatial analysis approaches. 

 

 

1. INTRODUCTION 

Natural disasters as well as major man made incidents are an 

increasingly serious threat for civil society. Earthquakes, 

landslides, collapse and debris flow, floods etc. usually cause 

damage or inaccessibility to roads network. The roads network, 

considered as transportation lifeline, has a critical impact on 

rescue and reconstruction missions after earthquake.  

 

So, effective, fast and coordinated disaster management crucially 

depends on the availability of real-time roads conditions 

information in the affected area. Emergency managers require 

timely and accurate information on areas affected by disasters to 

prioritize relief efforts and plan mitigation measures against 

damage (Ge L., et al. 2015). Road damage information, allows 

decision makers to obtain the transport accessibility and arrange 

relief routes. Thus, the extraction and assessment of road damage 

information is quite necessary. 

 

However, in situation assessment from the ground is usually 

time-consuming and of limited effect, especially when dealing 

with large or inaccessible areas. A rapid mapping based on 

remote sensing data can enable fast and effective assessment and 

analysis of medium to large scale disaster situations with a 

reasonable accuracy. 

  

Due to recent advancements in remote sensing technology, 

various data sources are provided which covers abundant ground 

information and can be acquired from satellite, aircraft, UAV, or 

many other platforms. 

 

Nevertheless, traditional road damage assessment methods, 

based on experts’ experience to interpret and recognize remote 

sensing images visually are time-consuming and the accuracy 
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sometimes can be easily affected by subjective feelings (Wang et 

al. 2015). 

 

Geomatics semi-automatic techniques, traditionally based on 

change detection approaches that compute relevant features from 

a pair of multi-temporal images collected before and after a 

disaster, suite much better for this purpose and provide better 

accuracy and performance. These methods analyze the 

relationship between texture, spatial, or intensity changes and the 

degree of damage observed after the event. Damage mapping is 

generally performed by setting appropriated thresholds, often set 

by following an expert’s experience or based on already known 

ground truth information (Adriano Bruno, et al., 2019). These 

approaches show acceptable success for damage assessment 

(Liu, W. et al., 2013, Gokon, H. et al., 2015, Karimzadeh, S. et 

al., 2018). 

 

However, their transferability is generally restricted due to their 

site-specific thresholds and the need for an appropriate set of pre- 

and post-event imagery data. Considering that a suitable pair of 

pre- and post-event data might not be available.  

 

In the same time usually these techniques supposed to use just 

one source of data, while in a time-critical disaster situation, 

utilization of multiple data sources is particularly desirable. Each 

additional data source provides extra features which can increase 

possible mapping efficiency and accuracy. For example, using of 

social media data may complement the remote sensing one, 

resulting in better assessment accuracy. 

 

For example, even in high resolution SAR images roads can often 

be confused with other targets such as railway tracks, rivers or 

even tree hedges (Henry Corentin et al. 2018). 
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Using just aerial imagery is challenging due to tree occlusions, 

building shadows, and varied atmospheric and ground conditions 

that can cause discontinuities in predictions, limiting their 

applicability for routing problems (Yoni Nachmany et al. 2019).  

 

So multisource data fusion can increase road segmentation 

accuracy. In order to use all these heterogeneous data sources 

together and to achieve better detection, assessment and mapping 

accuracy, extracting more features from the same data, it seems 

very prospective to use different machine learning techniques in 

combination with spatial analysis methods. Machine learning 

techniques show outstanding results in image classification tasks, 

that was proved many times since 2012 while ImageNet Large 

Scale Visual Recognition Challenge. The advances of machine 

learning technologies, together with satellite remote sensing data, 

have recently brought much attention to their applicability to 

damage recognition. 

 

The use of convolutional neural networks trained on large 

datasets to capture more spatial context of road networks dates 

back to Mnih and Hinton in 2010 (Mnih et al. 2010), and in recent 

years, better models (Zhang et al. 2018) and datasets (Shenlong 

et al. 2016) have been presented for road detection, as well as 

innovative metrics and approaches that optimized for 

connectivity. 

 

In this respect the goal of this research is to explore the possibility 

of using machine learning methods for rapid road damage 

detection, assessment and mapping employing optical remote 

sensing data (including satellite and unmanned aerial vehicles 

(UAV) imagery data) and synthetic aperture radar (SAR) data. 

 

Developing approach will be estimated with a specific focus on: 

- speed  

- accuracy  

- scalability for different disaster situations and territories 

- data quality and quantity dependency 

 

2. MATERIALS 

Multiple earth observation data of post-disaster events, caused 

road network damage were available in the case of the 28 

September 2018 tsunami in Indonesia. Taken datasets correspond 

to freely accessible data from: 

- Sentinel-1;  

- Sentinel-2;  

- ALOS-2;  

- Landsat-8. 

 

2.1 ALOS-2 data 

The L-band ALOS-2 PALSAR-2 SAR satellite imagery is 

administered by the Japan Aerospace Agency (JAXA). For our 

research we used two sets of post-event high-resolution SAR data 

captured on 1 and 3 October. All data were acquired in StripMap 

observation mode (SM2) with ground sampling distance (GSD) 

of approximately 5 m after preprocessing and provided in a 

product level 1.5, SAR amplitude image in a GeoTIFF format. 

 

2.2 Sentinel 1 data 

As a part of the European Union’s Earth observation program, 

Copernicus, two C-band SAR satellites were launched in 2014 

and 2016. These satellites continuously provide new medium 

resolution acquisition of the entire globe.  The default acquisition 

modes are the interferometric wide (IW) swath mode for land, 

with a resolution of 5 m by 20 m, whereas maritime regions are 

acquired in the extra wide (EW) swath mode, translating to a 

resolution of 20 m by 40 m. In general, 

new data are acquired every six days for Europe and every twelve 

days for the rest of the Earth. All data are dual-polarized, 

interferometric wide swath acquisitions, processed to single look 

complex images. This way, in addition to a simple amplitude-

based analysis, the interferometric coherence of two acquisitions 

can be computed and studied. In reaction to the disaster, data 

acquisition of Sentinel-1 in this area resumed on 5 was used. 

 

2.3 Sentinel-2 data 

Sentinel-2 is a satellite multispectral Earth observation mission 

operated by the European Space Agency (ESA) as a part of the 

EU Copernicus Programme. The Sentinel-2 imagery consists of 

13 bands in the visible, near-infrared, and shortwave-infrared 

(VNIR-SWIR) range with a field of view of 290 km and multiple 

ground sampling distances (GSDs) of 10 m, 20 m, and 60 m. A 

revisit cycle of 5 days is achieved by a constellation with two 

twin satellites. We used post-event datasets acquired on 17 

September and 2 October, respectively. Blue, green, red, and 

near-infrared bands that have a 10-m GSD were used in our 

analysis to make the spatial resolution consistent with the other 

datasets. 

 

2.4 Landsat-8 data 

Landsat-8 is an American Earth observation satellite launched on 

February 11, 2013. Landsat 8 scene size is 170 km x 185 km. It 

provides nine spectral bands, including a pan band. Landsat 8 

satellite captured an image of this area, on October 2, 2018. Blue, 

green, red, and near-infrared bands were used as well. 

 

2.5 UAV data 

Since we were not able to find any publicly available dataset for 

this disaster and in generally any dataset, containing unavailable 

roads (to our knowledge), we decided to develop our own, by 

searching Google Images for relevant images, using the 

following keywords: [Disaster | Landscape] + "aerial view" + 

"drone. We selected only images originating from aerial views, 

most likely captured by UAV. Images related to damaged, but 

still available for off-road transport roads, as well as images of 

ordinary roads were collected from many other different sources. 

Finally, we made a dataset consists of 97 images with unavailable 

roads, and 1000 with damaged and ordinary roads each one. 

 

Since it is going to use supervised machine learning, all the 

training imagery data were annotated with ground-truth data. 

Ground-truths are binary images showing if a pixel belongs to the 

any type of road or to the background. To do this the Intel 

Computer Vision Annotation Tool was used. The roads were 

identified as either: 

- unavailable;  

- damaged;  

- undamaged;  

with the help of Google Earth optical images. With ‘damaged’ 

class we marked roads, that do not have critical damage and still 

available for off-road transport. With ‘unavailable’ class we 

marked completely unavailable roads. 

 

Each road type was assigned in a specific label color. The masks 

for all road types were merged into a binary ground truth, which 

was then smoothed. 
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3. METHODS 

Within this work, we proposed an approach designed for roads 

semantic segmentation using different remote sensing data: 

UAV, satellite and SAR.  

 

Our workflow was divided into three main phases.  

 

In the first preprocessing step, the raw remote sensing data was 

calibrated and converted to geocoded images.  

 

During the second step, segmentation, to evaluate different deep-

learning approaches, we built a few models for pixel-based road 

state recognition used: 

- optical satellite data separately 

- SAR satellite data separately 

- optical and SAR data together 

- UAV data separately 

 

In the last step, mapping, we built a road state map from the 

outputs of developed models.  

 

3.1 Pre-processing 

Satellite SAR data: The processing procedures for the Sentinel-

1 and ALOS-2 PALSAR-2 datasets were almost the same and 

were performed using Scanex SAR processor software. Slave 

images were coregistered to a single master image, with the 

additional steps of debursting and merging of subswaths for 

Sentinel-1. Each dual-pol acquisition was then despeckled 

individually using NL-SAR (Deledalle, C., et al., 2015). In 

addition, pairs of subsequent acquisitions were used to compute 

coherence estimates, again using NL-SAR for the estimation. The 

benefit of nonlocal methods is twofold:  despeckling improves 

the robustness for subsequent classification, and they provide a 

less biased coherence estimate (Schmitt, M., et al., 2019) 

compared to estimators with a smaller window. Finally, all 

products were geocoded using the 3 s SRTM DEM.  

 

Satellite optical data: We performed atmospheric and terrain 

correction on the two Sentinel-2 Level 1C datasets using Scanex 

Image processor. 

 

UAV optical data: To increase UAV dataset, we employed data 

augmentation techniques (Krizhevsky, A., et al., 2012) to enlarge 

artificially the number of training images using label-preserving 

transformations, such as translations, transposing and reflections, 

and altering the intensities of the RGB channels. In this way, at 

every run of our training procedure, each image from the training 

dataset was randomly transformed before used as input to the 

model. 

 

3.2 Segmentation 

Fully Convolutional Neural Networks (FCNN) architecture: 

FCNN have proven to be very effective in areas such as image 

classification and recognition. It involves 4 following main 

operations: 

- Convolution  

- Non Linearity (ReLU) 

- Pooling or subsampling 

- Classification 

 

The first element, a DCNN encoder, analyzes the images and 

outputs a cluster of predictions. The image data is gradually 

down-sampled, proportionately becoming more meaningful. The 

second element, a decoder, applies up- sampling operations to 

restore the spatial properties of the predictions until the 

predictions share the same size as the input image. It is often done 

using bilinear interpolation or fractionally strided convolutions, 

also called deconvolutions (M. D. Zeiler et al., 2010). For 

classification tasks, the DCNN output is classified by fixed-size 

fully-connected layers, the network’s bottleneck, imposing a 

maximum input size upstream. For segmentation tasks, FCNNs 

remove this input size constraint by replacing the fully-connected 

layers by convolutional layer. 

 

Convolution is a mathematical operation on two functions to 

produce a third function that expresses how the shape of one is 

modified by the other. The convolution operation can be 

considered as the feature detector. It defines a certain number of 

NxN filters which slides over the image and by computing the dot 

product creates ’Feature Map’. Different values for such filters 

produce different feature maps. The CNN will learn the values of 

the filters used in the convolutional layers on its own but it needs 

to provide it with a specific parameters like filter size, number of 

filters, etc. Practically a big number of filters allows to extract 

more image features and improves the network prediction ability. 

Thus, it is necessary to set three important parameters before 

performing the convolution step: depth, stride and zeropadding. 

 

The non-linearity (ReLU) operation replaces all negative pixels 

with zero value. This step introduces non linearity to respect the 

non-linearity of real world datasets. This operation rectifies the 

feature maps previously computed with only linear operations. 

 

Posterior to this step comes the pooling operation which reduces 

dimensionality of our feature maps nevertheless keeping the most 

important information. Pooling helps to reduce the number of 

parameters of the network and plays a key role in controlling 

overfitting. It also makes the network invariant to small 

transformations such as translations as pooling takes the max of 

a local neighborhood. Pooling applies to each feature map 

separately. 

 

Among many existing FCNN architectures the Linknet 

(Chaurasia et al. 2017) was considered the best choice (Lichen 

Zhou et al. 2018) according to the following advantages in our 

tasks: fast prediction, lower GPU memory consumption, good 

accuracy. The architecture of LinkNet is presented in Figure 1. 

Here, ‘conv’ means convolution and ‘full-conv’ means full 

convolution (J. Long et al. 2015). 
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Figure 1. Linknet architecture 

 

3.2.1 Adjusting the FCNNs for road segmentation: The 

above architecture was modified in order to decrease 

computational requirements. As the encoder we used pre-trained 

on ImageNet data resnet34 (Kaiming He et al. 2016) encoder. A 

sequence of blocks was used as a decoder: 3x3 convolution, 

upsampling, 3x3 convolution. Hereinafter, “convolution 3x3” is 

a convolution operation with a 3x3 yard, stride 1 and padding 1. 

 

Experiments have shown that upsampling works no worse than 

transposed convolution, and there is no need to reduce or increase 

the dimension of the 1x1 convolution that was implemented in 

original Linknet, since the learning speed was sufficient. At the 

3x3 convolution input, the features from the corresponding resnet 

layer are received through a skip connection, connected via the 

depth channel to the output of the previous layer. 

 

As the loss function was chosen:  

 

w1 ∗  binary_cross_entropy +  w2 ∗  (1 − dice)                (1) 

 

Here weights w1 and w2 both were set up to 0.5, but in the last 

two epochs, slightly more weight was given to binary cross 

entropy. 

 

3.2.2 Results evaluation: To evaluate score between the 

predicted and ground truth binary masks built by neural network 

it could be simply used F1 score metric. The commonly used 

Pixel-level F1 score for computer vision segmentation evaluation 

weights each pixel equally, and a perfect score is only possible if 

all pixels are classified correctly as either road or background.  

 

But, since routing is our end goal, the F1 metric is suboptimal for 

given that a slight error in road width is heavily penalized, though 

a brief break in an inferred road (from a shadow or an 

overhanging tree, for example) is lightly penalized. 

 

So, to evaluate the results of routing, we used Average Path 

Length Similarity (APLS) metric proposed by organizers of 

‘SpaceNet Road Detection and Routing Challenge’ (Adam Van 

Etten, 2017), which is based on graph theory and estimates graph 

similarity matching, focusing on the logical topology 

(connections between nodes) of the graph. In essence, it sums the 

differences in optimal paths between ground truth and proposal 

graphs. 

 

To do that it uses the Average Path Length Similarity (APLS) 

metric that sums the differences in optimal path lengths between 

nodes in the ground truth graph G and the proposal graph G’ (Fig. 

2). 

 

 
Figure 2. APLS metric. Node a’ is the node in the proposal 

graph G’ nearest the location of node a in the ground truth 

graph G. L(a,b) denotes a path distance in the ground truth 

graph G, and L(a’, b’) denotes the path length between the 

corresponding nodes in the proposal graph. 

 

In effect, this metric repeats the path difference calculation 

shown in Figure 4 for all paths in the graph. Missing paths in the 

graph are assigned the maximum proportional difference of 1.0. 

The APLS metric scales from 0 (poor) to 1 (perfect). 

 

 

 

 
 

Figure 3. Demonstration of path length difference between 

sample ground truth and proposal graphs. Upper Left: Ground 

truth graph. Upper Right: Proposal graph with 30 edges 

removed. Lower Left: Shortest path between source (green) and 

target (red) node in the ground truth graph is shown in yellow, 

with a path length of ~948 meters. Lower Right: Shortest path 

between source and target node in the proposal graph, with a 

path length of ~1027 meters; this difference in length forms the 

basis for our graph similarity metric.  

 

Since our graph have 3 different classes, we can not estimate 

them all at once. To do this, following the practical disaster 

emergency services needs, we decided to measure the score of 

next two graph combinations: 

- only undamaged roads; 

- undamaged and damaged roads together; 

thus estimating two types of possible resulting road graphs, one 

for any vehicle, another only for off-road vehicles, that really 

makes sense while emergency management. 

 

Additionally, F1 score was also applied to binary masks built by 

neural network to estimate the initial complexity of classes 

identification. 

 

3.2.3 Preparing the data: We have observed in our train and 

test sets the presence of diagonal roads on some images. With 

mostly horizontal or vertical roads submitted to our CNN, the 

learning process will be less prone to assess for diagonal roads 

and it will therefore impact the good classification of our patches. 

In order to compensate for it, we are applying to each original 

image four random rotations thus increasing our amount of 

training data (Figure 4). 

 

 
Figure 4. Training I mage and it’s rotated variation 
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Before FCNN training all the data was randomly divided into 

training and testing datasets, in proportions of 75% and 25% 

accordingly.  

 

3.3 Mapping 

In this step, we transferred the pixel-based classification to the 

road graph. Building a graph from a pixel probability map is a 

nontrivial task. The ‘sknw’ library was used for this task. It 

receives a skeleton at the input, and at the output produces a 

multigraph. To add vertices in points where the road changes its 

direction, the Douglas-Pecker algorithm in OpenCV 

(http://opencv.org) – an optimized C/C++ programming library 

for computer vision, machine learning and robotics –  

implementation was applied. 

 

4. EXPERIMENTAL RESULTS 

Finally, we had 4 pre-trained neural networks, learned using SAR 

only, optical only, SAR + optical and UAV only data. To estimate 

the results, we used test dataset consists of 25% of initial data. 

Crossvalidation techniques were not quite appropriate since the 

lack of the data.  

 

Results of class-specific segmentation accuracies according to F1 

score are shown in table 1. 

 

Training data Undamaged Damaged Unavailable 

SAR 0.45 0.35 0.31 

Optical 0.81 0.65 0.52 

SAR + 

optical 
0.84 0.64 0.57 

UAV 0.93 0.73 0.35 

Table 1. Segmentation results F1 score % 

 

Results of road graphs estimation according to APLS score are 

presented in table 2. 

 

Training data Undamaged 

roads graph 

Undamaged + 

damaged roads graph 

SAR 0.39 0.35 

Optical 0.58  0.52 

SAR + optical 0.6 0.55 

UAV 0.75 0.68 

Table 2. Road graphs APLS score % 

 

It is apparent that using of UAV data for detecting ordinary roads 

as well, another types of roads should have shown good results. 

But in case of unavailable roads model trained on UAV data 

showed very low F1 segmentation score. It was caused by the 

fact, that training dataset contained more than ten times less 

training images with unavailable roads and even much less 

unavailable roads segments.  

 

Another models also showed a decrease in accuracy while 

dealing with segmentation of non-ordinary roads. The one reason 

was the same – data unbalancing.  

 

But the main problem while classifying unavailable roads is 

variability of different reasons of roads’ unavailability and 

consequently big variation of different visual states of such roads, 

that require much more training samples than if in case of 

ordinary roads classification.    

 

Moreover, very often roads may become unavailable due to its 

overlapping with some other object, e.g. fallen trees, parts of 

neighboring infrastructure or even peaces of buildings, that 

makes it visibly very similar to surroundings. 

 

 

In the same time if we use models just to achieve the graph of 

available and particularly available roads, then it doesn’t make 

sense if we missed the unavailable road with the background. 

Both means – there is no roads. Although class mismatching with 

another type of roads reduces validation results usability. 

 

The radar data based FCNN shows the worst result among 

another’s. We assume two reasons, could influenced this result. 

The first one is the low accuracy of SAR data in comparison to 

height changes happens with roads during emergencies. Another 

one is the fact, that used FCNN had pre-trained on ImageNet 

encoder. ImageNet data have nothing similar to SAR data, 

though it caused accuracy decreasing. 

 

5. CONCLUSION 

The results show that developed approach based on fully 

convolutional neural networks using multiple sources of optical 

remote sensing data and SAR data is suitable for the needs of 

assessment and mapping of road while emergency management, 

in case of unavailability of pre-event roads’ mapping data. 

 

It shows very good results if we use UAV data, providing roads 

graph with 75% and 68% of topological validity and 93% and 

73% accuracy of roads’ classification for undamaged roads and 

particularly available roads accordingly, which are so necessary 

for emergency management to provide fast and accurate 

response.   

 

In case of unavailability of UAV data, the combination of SAR 

and optical data also shows appropriate results, but just slightly 

better than single optical.  Thus using only optical and 

combination of SAR + Optical data also could be considered 

applying our approach. 

 

6. DISCUSION AND LIMITATIONS 

Current UAV data based FCNN has a very low classification 

capability for unavailable roads, that makes it impossible for 

using UAV data for updating the existing accurate data. In order 

to improve classification capability, it needs to obtain much more 

UAV images with unavailable roads samples.  

 

In current state the radar data based FCNN shows the worst and 

inappropriate result, and therefore cannot be used separately for 

disaster management. It could be significantly improved by 

training FCNN from scratch, not using pre-trained on ImageNet 

encoders.  

 

While calculating the accuracy score it needs to take into account 

if the unavailable road was missed with the background, either 

with another road class. It would significantly improve the 

practical significance of the assessment for building road graph 

from scratch for emergency management. 

 

Despite the case when we achieve the graph of available and 

particularly available roads if it needs to use our approach for 

existing road data updating, any misclassification should be taken 

into account, as we did in current research. 
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