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ABSTRACT: 

 

Infection with tropical parasitic diseases has a great economic and social impact and is currently one of the most pressing health 

problem. These diseases, according to WHO, have a huge impact on the health of more than 40 million people worldwide and are the 

second leading cause of immunodeficiency. Developing countries may be providers of statistical data, but need help with forecasting 

and preventing epidemics. The number of infections is influenced by many factors - climatic, demographic, vegetation cover, land 

use, geomorphology. The purpose of the research is to investigate the space-time patterns, the relationship between diseases and 

environmental factors, assess the degree of influence of each of the factors, compare the quality of forecasting of individual 

techniques of geo-information analysis and machine learning and the way they are ensembled. Also we attempt to create a 

generalized mathematical model for predicting several types of diseases. The following resources were used as a data source: 

International Society for Infectious Diseases, Landsat, Sentinel. The paper concludes with the summary table containing the 

importance of individual climatic, social and spatial aspects affecting the incidence. The most effective predictions were given by a 

mathematical model based on a combination of spatial analysis techniques (MGWR) and neural networks based on the LSTM 

architecture. 
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1. INTRODUCTION 

Dengue is an infectious disease that is transmitted from person 

to person through the mosquitoes Aedes aegypti and Aedes 

albopictus, which are the main vectors of the virus in various 

parts of the world. The World Health Organization (WHO) 

estimates that about 50-100 million cases of dengue are 

reported worldwide every year, and two fifths of the world's 

population is at risk of epidemic. Dengue or DHF / DSS has 

affected more than a hundred countries. Since 1950, more than 

500,000 hospitalizations and about 70,000 child deaths have 

been reported; the incidence rate among children reaches 64 per 

1000 population. 

 

According to the analysis of the global spread of dengue virus, 

the number of infections per year is estimated at 390 million, of 

which almost 96 million are symptomatic. It is estimated that 

the number of dengue infections has increased dramatically over 

the past 50 years, which has led to a huge impact on human 

health worldwide. Distribution regions include countries in 

South-East Asia, Latin America, Africa, where dengue has been 

hyper endemic for decades and is a serious problem (Kuno, 

2007, Xiao, et al., 2016, Shepard, et al., 2013, Ooi, Gubler, 

2009, Halstead, 2006). 

  

Early prediction of the fever spreading risks and its quantitative 

characteristics will allow to carry out preventive measures and 

actions in order to reduce the risks and potential losses. 

However, at the moment there are no universal models that 

would make it possible to effectively make such forecasts for 

various territories. There are separate studies (Anno, et al. 2014, 

Kiang, Soebiyanto, 2012, Naish, Tong, 2014, Chan, et al, 2011) 

describing forecast models for certain territories, but the 

impossibility of extrapolating the results of these works to other 

territories significantly reduces their usefulness (The Influence 

of Global Environmental Change on Infectious Disease 

Dynamics, 2014, Gubler, 2011). 

 

Thus, the main purpose of made research was to study the 

possibility of using machine learning methods to create a 

universal predictive model capable of predicting quantitative 

indicators of the incidence of dengue fever for various 

territories. Another goal was to assess the impact of the initial 

data set features on the final result of disease prediction. 

 

2. METHODS AND MATERIALS 

To create forecasting model, the remote sensing, 

cartographic and statistical data related to the environment 

collected by the Center for Disease Control and Prevention was 

used (Dengue and Climate, 2019), National Oceanic and 

Atmospheric Administration in the US Department of 

Commerce (Center for Disease Control, Health Map, 2019), and 

Philippine Department of Health was used (Department of 

Health, 2019). 

 

The key predicted feature was the number of cases of dengue 

fever within 1 week. This feature can also serve as an indirect 

indicator for approximate estimation of fever outbreak 

probability. For example, very small values may indicate a low 

outbreak probability. However, its exact assessment requires the 

creating of a separate forecasting model. 

 

To estimate the quality assessment of the developing model was 

selected the accuracy assessment metric - the mean absolute 

error. For its calculation, we used the service drivendata.org, 
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which allows us to verify the results of the model prediction for 

2 territories, using a test sample provided by the service in 

Puerto Rico (San Juan) and Peru (Iquitos). 

 

Initial data used to create forecasting model included the 

following features:  

- city abbreviation;  

- date of measurement; 

- Current climate indicators and their forecast according 

to NOAA's GHCN, PERSIANN, NOAA's NCEP: 

- temperature; 

- humidity; 

- rainfall; 

- NDVI values for territories adjacent to the city, 

calculated from the pixels of the satellite image (Haug, 

Ostermann, 2014, Peters, et al, 2002, Bottou, 2010).  

The sample included 936 records for the city of San Juan and 

520 records for the city of Iquitos. 

 

A visual representation of climatic parameters set and temporal 

coverage for the two described cities is shown in Figures 1-4. 

 

 
Figure 1. Average value of precipitation, mm 

 

 
Figure 2. Average temperature, Celsius 

 
Figure 3. Relative humidity, percentages 

 
Figure 4. Dataset time interval, years 

 

After forming the dataset, pre-processing of data was carried 

out, which included the removal of anomalous values - 

“outliers”, as well as normalization. The removal of anomalous 

values is necessary to eliminate from the sample, on the basis of 

which the predictive model is based, the data resulting from 

poor quality measurements. Such data can lead to a significant 

decrease in the accuracy of the forecast. 

 

To detect the outliers Turkey’s fences method was used (Brown, 

2002):  

- for each feature the quartiles were found (quartiles are 

the numbers which are ‘borders’ for separating the set of the 

features values to the 4 equal parts). 

- the Interquartile range (IQR) (difference between 1 and 

3 quartiles) was calculated. 

- values which lies outside the extreme quartile plus 1.5 

IQR are outliers.  

 

Data normalization, i.e. bringing them to a single range of 

values is necessary for their use in metric algorithms that are 

sensitive to scaling, as well as in neural networks. Some 

algorithms, such as gradient boosting and random forest, do not 

require preliminary normalization of input data. In this regard, 

for each individual machine learning algorithm its own 

approach to data normalization was applied. 

 

In order to select the most appropriate tools for solving the task, 

a fairly wide range of tools was analyzed - methods of 

geographic information systems, typical machine learning 

libraries, artificial neural networks. 

 

In modern geographic information systems (ArcGIS Pro, 

GRASS GIS, SAGA GIS), such spatial forecasting methods as 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-221-2019 | © Authors 2019. CC BY 4.0 License.

222



 

IDW, local and global polynomial methods and kriging are used 

to simulate the spatial distribution of indicators of objects or 

phenomena. The disadvantage of these methods in terms of the 

task is the impossibility of taking into account the dynamics of 

changes in indicators over time while spatial prediction. In 

order to take into account these changes over time, one must 

either use specialized algorithms (for example, ARIMA / 

SARIMA), or convert information about the year, month, 

quarter, day, etc. in separate parameters with numeric values 

and add them to the attribute table as separate additional 

columns of the analyzed data. Using such data modifications, it 

is possible to take into account the dynamics of changes when 

using conventional regression analysis algorithms, for example, 

linear regression or random forest. Thus, for almost all 

geographic information systems, it is required either to connect 

additional modules (usually from Python or R), or to upload 

data for further processing. In this regard, the use of only GIS to 

solve this problem is not appropriate. 

 

These technologies are well studied and are unspoken standards 

in the construction of analytical models, but if we talk about the 

prospects for development, then the newest direction for the 

problems of forecasting spatial-temporal data is neural 

networks. Neural networks have the ability to learn on 

heterogeneous data types that take into account both the spatial 

and temporal position of objects, which is of great theoretical 

and practical importance for creating models for analyzing and 

predicting time series. Additional advantages of neural networks 

are their high generalizing ability, which allows to work 

effectively in such non-standard conditions as non-obviousness 

of the internal data structure, errors and insufficiency in 

experimental data. Although neural networks are non-linear 

structures, they allow approximation of an arbitrary continuous 

function. A neural network based model can be trained in such a 

way that it could determines the further development of the 

process or phenomenon during the specified period with high 

confidence. Since the time series of most phenomena and 

processes are continuous functions, the use of neural networks 

in their prediction is fully justified and correct. The process of 

using neural networks is based on the use of tensorflow, theano, 

pytorch and some other libraries. In addition, there is the 

possibility of using the created models and scripts in GIS, since 

in many common geographic information systems the module 

development language is also python [19-23]. 

 

Features and data heterogeneity lead to the need to use machine 

learning methods. To solve the problem, we considered the 

following most popular machine learning methods: gradient 

boosting based on decision trees (in the implementation of 

xgBoost, LightGBM, CatBoost), random forest, nearest 

neighbor method, linear regression.  

 

After a preliminary assessment of the data, the next step was the 

selection of parameters, so called – feature engineering (Russell, 

Norvig, 2010). This stage is very desirable for almost any 

dataset, since unnecessary features increase RAM requirements, 

reduce the model's learning rate and, most importantly, the 

ability to generalize, leading to model overfitting. 

 

Feature engineering can be performed either by calculating 

numerical indicators of correlation and entropy, or visually, 

using charts, or a map. Comparison of parameters with each 

other can be performed using the traditional calculation of the 

correlation value (for example, Pearson and Spearman 

coefficients), as well as with the help of specialized calculated 

indicators focused on the analysis of spatial data and time 

series. 

 

Spatial correlation is usually (Benedetti-Cecchi, et al, 2010, 

Bivand, et al, 2011, Fisher, Wang, 2011) measured using the 

Moran index, indicating whether there is a clustering of objects, 

or they are randomly arranged. The calculation of this indicator 

is implemented, for example, in ArcGIS Pro, GRASS GIS, 

PySAL. 

 

For the analysis of the time series entropy, the Lyapunov index 

is the most universal. Also for this purpose the Hurst coefficient 

can be used, detrended fluctuation analysis (Song, et al, 2014, 

Li, et al, 2013, Kantz, Schreiber, 2004).  

 

To assess the feature importance on the prediction result, a 

correlation matrix and conclusions on it were used based on the 

pandas profiling report. Also feature importance method 

(included in most implementations of scikit-learn algorithms) 

(Strobl, et al, 2008, Van der Laan, 2006) and a specialized 

algorithm for selecting parameters – Boruta were used (Kursa, 

Rudnicki, 2010). 

 

According to the results of the correlation matrix, a high 

relation between the values of temperature, humidity and 

precipitation was revealed. (pairs of parameters: 

- quarter - month (ρ = 0.97069),  

- reanalysis_avg_temp_k - reanalysis_air_temp_k (ρ = 

0.90178),  

- reanalysis_sat_precip_amt_mm - precipitation_amt_mm 

(ρ = 1),  

- reanalysis_specific_humidity_g_per_kg - 

reanalysis_dew_point_temp_k (ρ = 0.99705),  

- reanalysis_tdtr_k - reanalysis_max_air_temp_k (ρ = 

0.91858)).  

According to the results of the importance assessment using 

Boruta and feature importances, the highest priority is given to 

temperature, NDVI index values and precipitation. The seven 

most important features according to the results of applying 

feature importance and Boruta methods are given in the table 1:  

 

No. Feature importance Boruta 

1 reanalysis_air_temp_k ndvi_sw 

2 ndvi_sw ndvi_se 

3 city reanalysis_air_temp_k 

  

4 reanalysis_dew_ 

point_temp_k 

reanalysis_dew_ 

point_temp_k  

5 reanalysis_tdtr_k reanalysis_avg_temp_k 

6 ndvi_se reanalysis_tdtr_k 

7 station_min_temp_c station_min_temp_c 

 

Table 1. Feature importances 

 

The results of the feature analysis were then used in the 

construction and analysis of mathematical models based on 

Random Forest with the following criteria for selecting 

parameters: clipping parameters with a correlation of more than 

0.9, clipping parameters with a Boruta rank of less than 20, 

clipping parameters with Feature importances <0.3. The results 

are shown in the final table. 

 

At the stage of building forecasting models, the next most 

suitable algorithms were analyzed (Anselin, 2019, Davies, Van 

der Laan, 2016, Jiang, et al, 2017, Reichstein, et al, 2019): 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-221-2019 | © Authors 2019. CC BY 4.0 License.

223



 

- random forest; 

- gradient booster based on decision trees (in the 

implementation of xgBoost, LightGBM, CatBoost); 

- a neural network (in the implementation of Tensorflow 

and Keras) with two architectures distinguished by the 

presence of hidden layers (Goodfellow, et al, 2016); 

- SARIMA and ensemble the results of the SARIMA 

algorithm; 

- xgBoost.  

 

During implementation of both neural networks preliminary 

data normalization was made. For the activation we used 

method “relu” and optimization method - “adam”. Hidden 

layers of the neural network consisted of 5 and 13 elements 

(justification). 

 

For the CatBoost algorithm, only the city was used as a 

categorical parameter and an additionaly year, season and week. 

 

For a potential improvement of the prediction results, the 

original dataset was expanded with the distribution data (in 

numerical representation) (Kraemer, et al, 2015) of Aedes 

aegypti and Aedes albopictus over the world from 1958 to 

2014. The results of the change in MAE, as a result of data 

expansion, are shown in the summary table. 

 

Since one of the main objectives of the research was to assess 

the model scalability for different territories of its application 

regardless of the territory under consideration, so the best 

version of the constructed forecasting model was validated on 

the data of another territory. It contains the number of 

confirmed monthly cases of dengue fever in the municipality of 

Campinas (Spain) for the period from 1998 to 2015 (data source 

SES (Secretaria Estadual de Saúde) and SINAM (Sistema de 

Informaçao de Agravos de Notificação)), supplemented with 

information on precipitation in mm, average, maximum and 

minimum temperatures per day 

[https://www.kaggle.com/renangomes/dengue-temperatura-e-

chuvas-em-campinassp].  

 

3. RESULTS 

The results of the constructed models quality assessment of are 

shown in Table 2. 

 

Rating Method and its application features MAE 

1.  LSTM and xgBoost Ensemble 25.1 

2.  SARIMA and xgBoost Ensemble 25.8 

3.  

Random forest, separate models for each city, 

selection of hyperparameters, clipping 

parameters with a correlation of more than 

0.9 

26.38 

4.  

Random forest, separate models for each city, 

selection of hyperparameters, clipping 

parameters with a correlation of more than 

0.9, additional data on mosquitoes 

26.47 

5.  

Random forest, selection of hyperparameters, 

clipping parameters with a correlation of 

more than 0.9 

26.5 

6.  Random forest, selection of hyper parameters 26.6 

7.  Random Forest in Orange 26.6130 

8.  

Random forest, selection of hyperparameters, 

clipping of attributes with a Boruta rank of 

less than 20 

26.9 

9.  

Random forest, selection of hyperparameters, 

clipping of attributes with Feature 

importances <0.3 

27.1 

10.  нейронная сеть с двумя скрытыми слоями 27.4 

11.  xgBoost, default options 27.9 

12.  LightGBM, default options 28.7 

13.  
CatBoost, selection of hyperparameters, 5 

categorical variables 
29.561 

14.  Linear regression in Orange 29.8173 

15.  SARIMA 30.3 

16.  Keras, no hidden layers 32.5 

17.  KNN in Orange 33.8774 

18.  Dataset Campinas (Spain) 36.7 

19.  
CatBoost, default parameters, 4 categorical 

features 
37.1 

20.  
CatBoost, default parameters, categorical 

feature - city 
37.2 

Table 2. Models quality 

 

4. CONCLUSION 

According to the results of the research, the following 

conclusions were proposed: 

 for spatial-temporal prediction with a large number of 

parameters, a combination of different algorithms for data 

processing using the methods of boosting or bagging is 

necessary; 

 data preprocessing is usually no less complex and 

productive than building models; 

 graphical tools for data processing and model 

building, such as Orange, are almost as good as python scripts, 

while exceeding their speed in creating models, but they have 

less capacity for data processing and presentation of results; 

 random forest algorithms, along with gradient 

boosting, are the most universal for space-time forecasting 

tasks; 

 in the case of a large number of inputs of the neural 

network, it is necessary to use hidden layers. 

 

Also, in order to increase accuracy and model scalability, in 

further explorations it is planned to expand the initial data with 

open data on monitoring of mosquitoes Ae. aegypti and Ae. 

Albopictus, additional indices calculated on the basis of satellite 

monitoring. For building time-series based models it is going to 

use neural networks of the LSTM architecture and its variations. 
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