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ABSTRACT:

Precise models of the impact of explosions in urban environments provide novel and valuable information in disaster management
for developing precautionary, preventive and mitigating measures. Yet to date, no methods enabling accurate predictions of the
process and effect of detonations at particular locations exist. We propose a novel approach mitigating this gap by combining
state-of-the-art methods from photogrammetric 3D reconstruction, semantic segmentation and computational based numerical sim-
ulations. In a first step, we create an accurate urban 3D reconstruction from georeferenced aerial images. The resulting city model
is then enriched with semantic information obtained from the original source images as well as from registered terrestrial images
using deep neural networks. This allows for an efficient automatic preparation of a 3D model suitable for the use as a geometry for
the numerical investigations. Using this approach, we are able to provide recent and precise models of an area of interest in an auto-
mated fashion. Within the model, we are now able to define the explosive charge size and location and simulate the resulting blast
wave propagation using CFD simulation. This provides a full estimation for the expected pressure propagation of a defined charge
size. From these results, arising damages and their extent, as well as possible access routes or countermeasures, can be estimated.
Using georeferenced sources allows for the integration and utilization of simulation results into existing geoinformation systems of
disaster management units, providing novel inputs for training, preparation and prevention. We demonstrate our proposed approach
by evaluating expected glass breakage and expected damages impairing the structural integrity of buildings depending on the charge
size using a 3D reconstruction from aerial images of an area in the inner city of Graz, Austria.

NOMENCLATURE 1. INTRODUCTION
Abbreviations Accurate estimation of the effect of an explosion is an essen-
tial prerequisite for effective and meaningful preparation and
SfM Structure from Motion training for an emergency. Yet, especially in urban environ-
ments, this necessary data is hard to come by, since field tests
CNN Convolutional Neural Network are infeasible, empirical methods for estimating the expected

effect and damage radius of an explosion on the other hand

CFD Computational Fluid Dynamics only produce inaccurate results. One of the reasons for this
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~ Adiabatic index of air Figure 1. Example of the result of a simulation of an explosive

charge with 10 kg of equivalent mass prepared for direct

Vbar Volume of a compressed gas filled sphere integration into a GIS solution.

po Initial ambient total pressure is their reliance on a free field assumption for the propagation
Ma Mach speed of the shock wave, thereby ignoring effects in reflections at
complex geometry present in urban environments. Research on
methods for more precise numerical estimation of shock wave
propagation able to consider geometric constraints exist at least
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since the 1950ies (Brode, 1955). Today, with the availability
of large scale numerical simulation in combination with po-
tent numerical solvers, at least in theory, nothing stands in the
path of performing accurate analysis of shock wave propaga-
tions of explosive expansions in complex geometries. Yet, it
still remains an open question how to acquire intermediate-scale
or large-scale scene geometries suitable for numerical evalu-
ation without having to perform time consuming manual edit-
ing. On the other hand, reconstruction of the underlying 3D
scene geometry from both aerial and terrestrial image data is
an active area of research in the photogrammetry community,
where a large body of methods tackling this task exists. Bal-
ancing the demands for highly detailed and complete recon-
structions which capture the necessary scene complexity with
the needless increase in computational complexity of the sim-
ulation by introduction of scene details which are irrelevant or
insignificant to an explosive expansion is still an open question.
Furthermore, the question of how to present the results of such a
simulation in a relevant and usable way to disaster management
forces for preparation and training is yet unsolved.

In this work, we propose an approach uniting the fields of pho-
togrammetric 3D reconstruction and numerical simulation of
explosive expansions and demonstrate ways to make results of
such simulations directly available to disaster management by
integrating them in existing GIS solutions (cf. Figure 1). We
start by giving a short overview over previous works done in
the fields of photogrammetric 3D reconstruction and semantic
segmentation as well as simulation and damage categorization
of explosions in section 2, and continue by presenting our pro-
posed approach in sections 3 and 4. Possibilities to make the
results of the simulation usable for disaster management units
and emergency services by integrating them seamlessly in exist-
ing GIS solutions is detailed in section 5. We finally present the
results of a case study performed in the city of Graz, Austria,
in section 6. The paper concludes in section 7 with a summary
and an outlook.

All figures are best viewed at high resolution in the digital ver-
sion of this paper on the computer.

2. RELATED WORK

Simulating explosions by modelling the explosive charge as an
initial volume filled with compressed gas is well-known and has
been employed in many projects (Brode, 1955, Larcher, Cas-
adei, 2010). Other work has already successfully applied this
approach for blast wave calculations with geometries (Sohaimi
et al., 2016). In contrast to their work, which only uses small
geometric structures or free fields, we demonstrate its use in a
large scale reconstruction of an urban environment. In contrast
to FEM modeling (Fairlie, 1998), this model provides enough
precision for medium and long distances without a need for in-
creasing computational costs.

Structure from Motion (SfM), or the joint 3D reconstruction
of geometric structures and estimation of camera poses from a
set of images, is a well researched topic in the computer vision
community (Hartley, Zisserman, 2000) with an ever increasing
number of algorithms and improvement to overall robustness
(Ozyesil et al., 2017) which has lead to several readily avail-
able software solutions for 3D reconstruction, both free and
commercial (Schonberger, Frahm, 2016, Agisoft, 2019, Mapil-
lary, 2017). If the aim is automated editing of a reconstructed

scene, it is essential to know which parts of the scene recon-
struct which class of objects. In Computer Vision, solving this
task automatically for each data point is known as semantic seg-
mentation. In recent years, the advent of deep-learning based
methods utilizing CNNs has revolutionized this field, virtually
all conventional approaches to semantic segmentation have been
outperformed by CNN based methods. Approaches to semantic
segmentation exist for 2D raster images (Chen et al., 2018,
Garcia-Garcia et al., 2017, He et al., 2017), 3D point clouds
(Qi et al., 2017, Liu et al., 2017), and 3D volumetric repres-
entations (Riegler et al., 2017, Wang et al., 2017) as input, the
latter ones however usually for scene part segmentation. While
methods for volumetric data representations suffer from large
memory consumption, CNNs for 3D point clouds need to tackle
the challenge posed by the inherent lack of structure within this
data representation. Methods aimed at 2D raster images are
among the earliest works, yet the fusion step from two dimen-
sional image data to 3D geometry has to be solved.

3. CITY MODEL CREATION

Despite its long research history, automatic 3D reconstruction
may not produce results directly applicable to specific tasks.
Simulating the shock wave propagation of an explosion within
a complex 3D geometry is computationally demanding, where
small, sparse, or mobile structures do not affect the result much
or may not contribute relevant information while vastly increas-
ing the computational complexity. Removing these structures
manually is a time-consuming and hence infeasible task. We
therefore augment the reconstruction process to automatically
detect and remove unnecessary elements from the scene. To
achieve this in a robust fashion, we propose a twofold approach:
in a first step, we create a 3D reconstruction from georeferenced
aerial images using conventional SfM and dense 3D matching
methods. We then create semantic labels for all aerial images
and fuse them with the dense point cloud obtained as an inter-
mediate result of the previous step to create a semantic point
cloud. The semantic information in is subsequently used to re-
move unnecessary scene information. The cleaned and prepro-
cessed point cloud is then piped back into the SfM pipeline to
create a meshed model of the scene.

3.1 3D Reconstruction

In the most general sense, this task is solved by finding a large
set of correspondences between images showing the same part
of the scene, which can be used to solve a large system of equa-
tions with 3D locations of corresponding image points and cam-
era pose parameters as variables. For the task of creating 3D re-
constructions and preparing them for damage estimation of ex-
plosions, besides sufficient reconstruction quality, the output of
the reconstructed point cloud together with point normal direc-
tions (information of the surface orientation related to the point
location) and the refined camera poses (orientation and location
in 3D) for each image are required. Since at this time several
readily available software solutions solving this problem exist
which do meet our requirements, we do not discuss the task of
3D reconstruction in greater detail.

3.2 Semantic Fusion

The geometry reconstruction step reconstructs all parts of the
scene which were static during the time of image acquisition.
These can be cars parked during that time, which do not add
general information to an explosive expansion, as well as sparse
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or previous structures like trees and lampposts, which in prac-
tice do not alter the expansion of a shock wave significantly.To
keep the task of numerical simulation of an explosive expan-
sion within a complex geometry tractable, the geometry should
be simplified by removing these structures. For an automated
solution to this challenge, we propose using semantic informa-
tion for each reconstructed 3D point to first separate the model
into several classes relevant to the cleaning process and then
process the parts of the model separately. The task of semantic
segmentation can be paraphrased as the inference of some sort
of sense for each data point directly from the data. It is usually
defined in terms of a regression problem assigning each data
point (each pixel in a 2D raster image or each point within a 3D
point cloud) a label from a predefined set of class labels. The
set of labels depends on the task to be solved, in this context we
defined the semantic class label set C' = {ground-level, wall,
roof, vegetation, vehicles, clutter}.

Since our 3D geometry model is generated from aerial images,
we propose to perform semantic segmentation directly on these
images and to fuse the semantic attributes later on with the 3D
model. Besides the generally more robust performance of se-
mantic segmentation methods on 2D images, we expect an ad-
vantage of added robustness due to the visibility of parts of
the scene from different viewpoints. Since for our purpose a
semantic resolution of the scene of several centimeters is suf-
ficient, we propose to leverage an intermediate scene repres-
entation within an octree data structure for efficient and robust
fusion of the semantic labels from all viewpoints with the 3D
geometry. The core principal of the octree structure is the re-
current subdivision of a cubic volume into sub volumes of equal
size, called nodes, up until a predefined target size of cubes at
the lowest level, the so called leaf nodes, is reached. When
inserting a point cloud model into the octree data structure,
memory will only be allocated for leaf nodes containing points,
which makes this representation extremely memory efficient
and therefore suitable for the representation of large structures.

Methods for semantic segmentation produces for each data point
a vector [, of real numbers of the same size as there are semantic
classes, which are interpreted in terms of likelihoods of the data
point belonging to the respective class. A semantic decision is
usually made by assigning the label ¢, with the highest like-
lihood to the data point according to equation 1, where I,(c)
denotes the likelihood that pixel p will belong to semantic class
c.

cp = argmax lp(c) (@))

We postulate that in general, erroneous classifications will not
be made by a large margin, therefore not casting direct class
votes per view for a data point, but instead accumulating the
likelihood vectors and taking the class with the maximum like-
lihood of the aggregate likelihood vector, should again produce
more robust results.

We build our approach onto the open source octree implement-
ation OctoMap (Hornung et al., 2013), which we augment to
not only hold occupancy information for each node, but to also
hold a likelihood vector l,, per node encoding the likelihood of
a node to belong to one of our semantic classes. Now, for each
image, we cast a semantic vote per pixel by projecting a ray
from the cameras center of projection into the octree starting
from the camera location using the camera pose obtained dur-
ing 3D reconstruction. We update the likelihood vector [,, of
the first occupied leaf node the ray intersects. We denote the set

of pixels p that contribute to a certain leaf node n as P,. After
all source images have been processed, we assign a unique class
label ¢, to each leaf node according to equation 2, and finally
assign a label ¢, € C to each point of the reconstructed model
by querying the respective leaf node. We are now able to separ-
ate the model into parts according to their semantic class.

cn = argmax [, (c) = argmax Z Ip(c) )
¢ ¢ pEPy

3.3 Model Cleaning

Suitable approaches for cleaning irrelevant parts from the scene
depend on their class. Whereas usually small structures from
the class clutter, such as posts, benches, signal masts, and lamp-
posts can be removed directly without negatively impairing the
scene integrity, for larger structures (cars from the class vehicle,
trees from the class vegetation) a different approach is to be pur-
suit. Cars, especially on parking areas, may form larger patches
within the reconstruction, directly removing them may result in
holes in the model or higher complexity in meshing. Trees on
the other hand may cause problems in case of limited training
data, which can lead to meadows, which are part of the ground-
level category which we want to keep, being erroneously classi-
fied as trees. In both cases, we leverage an estimate of the local
height of the ground level, which is extracted by rasterizing the
point cloud in the xy-plane (assuming a coordinate system in
which the z-axis is antiparralel to the direction of gravity, i.e.,
it points in the “up” direction) and using the top-hat filter to
estimate the ground level (Li et al., 2014). An alternative ap-
proach for ground level estimation working directly on point
clouds may be cloth-simulation (Zhang et al., 2016).

Now, prior to removal of points segmented as vehicles, they are
partitioned into single clusters based on the euclidean distance
between points. Then the points for each vehicle cluster are
projected onto the ground level estimate for that area together
with the ground-level points surrounding the respective cluster
within a distance d. This “padding” is done to account for slop-
ing effects arising from the reconstruction around vehicles. For
points in the semantic class vegeration, in a first step the labels
of points close to the estimated ground level are corrected to the
class ground-level and the remaining points in vegetation are
clustered based on their euclidean distance. Small clusters can
be removed directly, larger clusters are processed in the same
way as the clusters for vehicles. For all altered points, the point
normal vectors are update with the corresponding ones extrac-
ted from the ground level estimate.

Finally, the cleaned point cloud is then returned into the 3D
reconstruction pipeline to create a meshed wire frame model
which can be used as geometry for numerical simulation.

4. EXPLOSION SIMULATION

The estimation of the resulting blast wave propagation of a pre-
defined charge size within the geometry model is solved with
CFD numerical simulation.

4.1 Numerical setup
We use a transient Reynolds-Averaged Navier-Stokes (RANS)

simulation for our numerical investigations applying the com-
mercial finite volume solver ANSYS®) Fluent®. Because of
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high shock velocities (Mach number Ma > 0.3) occurring in
an explosion, their impact on the density can not be neglected,
so the fluid density varies according to the ideal gas law. As a
fluid, air is defined as an ideal gas, it is assumed that air behaves
like a standard compressible fluid with an inviscuous flow. Us-
ing this inviscid flow assumption, the impact of fluid viscosity
in the model can be neglected. When viscous forces are neg-
lected, the Navier-Stokes equation can be simplified to a form
known as the Euler equation. Furthermore, according to the
boundary conditions (Figure 2), the houses and floor areas of
the 3D geometry have been defined as free-slip walls and the
environment as a non-reflecting total pressure with total ambi-
ent pressure of 1 atm. Due to the complexity in the 3D model,
we do not resolve deformations or the destruction of the geo-
metry, it is therefore assumed to be rigid. Once a virtual ex-

Total pressure

wall

Figure 2. Polyhedral mesh based on the imported 3D model.
The volumetric resolution is at its finest level around the blast
center and gets coarser with increasing distance.

plosive charge has been placed in the geometry (cf. Figure 6
in Section 6), we discretized the whole fluid domain applying a
volumetric polyhedral meshing strategy. To achieve an accurate
solution from the simulation, a fine volumetric resolution of the
mesh is needed in areas of high local pressure gradients (Figure
2). The highest resolution mesh zone starts in the near region
of the explosive charge where the highest pressure gradients are
occurring. The consequence of the explosion is a high intensity
wave that spreads from the source outwards to the surround-
ing air. As the wave propagates, it decreases in pressure and
speed with increasing distance from the center of the explosion
(Figure 3). Thus, the volumetric resolution of the mesh can be
decreased with increasing distance to the detonation origin in
accordance with the dropping pressure gradients. This meshing
strategy provides high resolution of the blast wave simulation
at any time and location while keeping the computational cost
low.

4.2 Model of an explosive charge as compressed gas

We model the explosive charge as a spherical volume of com-
pressed gas with high over pressure, which acts as the source of
the explosion. In the model, the radius of the sphere is set to
1 meter, the internal energy of the containing compressed gas
is the same as the energy released by the explosive charge. To
simulate the blast wave propagation for a given charge size, we
set the expected pressure for this initial volume using the equa-
tion (3) according to Brode (Fisher, Schelyaev, 2017).

Ernr(y - 1)

3
‘/bal +p07 ( )

PBrode =

Pressure

Distance from explosion

Figure 3. Blast pressure as a function of distance at four points
in time, reproduced according to (Ngo et al., 2007).

For the calculation, compressible air is used as a fluid. The
compression is adiabatic (ideal gas), therefore the compressed
gas inside the volume has the same properties as air at a specific
temperature and pressure. We define the energy released by
an explosive charge in terms of TNT equivalents. This energy
is necessary to calculate the magnitude of the momentum of
the explosion, and calculated from the equivalent TNT mass
M N7 according to equation (4) (Fisher, Schelyaev, 2017).

Ernt = Mryt - 4,52 - 10° “4)
The adiabatic mathematical expression (5) determines the res-

ulting temperature of the compressed gas with initial pressure
DPBrode inside the sphere (Fisher, Schelyaev, 2017).

T = Tp (PBrede )5 )
Po
Aerial Images
Semantic Segmentation
3D Model Image Orientation Class Labels
Model Fusion
Semantic 3D Model
Model Cleaning
3D Geometry
CFD Simulation

Damage Zones

Map Creation

GIS compatible Maps

Figure 4. Schematic overview of the workflow. Orange boxes
depict input and output data, grey boxes mark intermediate
results and blue boxes symbolize specific modules in our
pipeline.
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5. INTERPRETATION AND UTILIZATION

The local maximum in calculated blast pressure enables estim-
ations of the effects occurring in different regions of the do-
main. With this information studies on environmental impacts
and consequences for the human population can be carried out.

Table 1. Blast over pressures and associated maximum wind
speed effect on various structures and the human body according
to (Glasstone, Dolan, 1977, Sartori, 1983).

peak over maximum effect on structures effect on the human body
pressure wind speed
1 psi 60 kph window glass shatters light injuries from frag-
ments occur
2 psi 110 kph moderate damage to people injured by flying
houses (windows and glass and debris
doors blown out, severe
damage to roofs)
3 psi 165 kph residential structures col- serious injuries are com-
lapse mon, fatalities may occur
5 psi 265 kph most buildings collapse  injuries are universal,

fatalities are widespread

10 psi 475 kph reinforced concrete most people are killed

buildings are severely
damaged or demolished

20 psi 800 kph heavily built concrete fatalities approach 100%

buildings are severely
damaged or demolished

Table 1 provides an estimate of the effects of increasing blast
pressure on structures and people based on data of the Depart-
ment of Defense study (Glasstone, Dolan, 1977) conducted by
Glasstone and Dolan. Due to the estimation provided by the
explosion simulation that the local maximum blast over pres-
sure will reach or surpasses specific limits in a given scenario,
damaged or demolished concrete buildings and injuries or even
fatalities in the population can be expected in certain areas.

Using this damage classification in combination with the results
from the explosion simulation, we propose to create map layers
for GIS applications detailing damage zones in the following
ways:

e Map layers showing the detailed damage zones accord-
ing to the damage classes of Table 1. These will provide
insight in possibly unexpected disconnected areas further
away from the blast center with again heightened pressure.
These occur due to interference effects of multiple wave
fronts stemming from reflections at building surfaces. We
postulate that this information can heighten the understand-
ing of wave propagation effects and channeling effects in
urban environments occurring during explosions.

e Map layers showing the maximum areas in which certain
damages can be expected according to the simulation in
terms of a convex hull around all areas of that specific
damage class. This provides insight into the difference in
spread between over pressure ranges as well as between
different charge sizes. With this information it is also pos-
sible to determine secure locations to position security and
rescue forces in the run-up of an event which is expected
to face a heightened threat level.

e For geoinformation systems capable of showing changes
over time we can prepare this information not in terms
of the overall expected maximum pressure but as a time

series showing the expansion and ddevelopment of pres-
sure areas, again aiding in the qualitative understanding of
the effects of blast pressure propagation in training events
for disaster response personnel.

e This information can also be provided with full 3D inform-
ation to be integrated into personnel training, again adding
to the qualitative understanding of effects to be expected
in blast wave propagations in urban environments.

Furthermore, if it is possible to enrich the geometry model with
additional information, possibly drawn from existing land re-
gisters, even more detailed damage analysis can be done. We
will show this exemplary during our case study detailed in sec-
tion 6 by first detecting windows in terrestrial imagery registered
to our geometry model and analysing different scenarios in terms
of expected glass damage.

6. EXPERIMENTS AND CASE STUDY

To demonstrate our proposed approach, we processed a recon-
struction of a square portion with an edge length of ca. 500
meters of the inner city of Graz, Austria, around a square chosen
as our target area for placement of our virtual explosives. The
resulting point cloud model consists of 75 million points with
an average distance of 10 centimeters. Since no suitable data
set for semantic segmentation of aerial images into classes rel-
evant to our task was available, we partially annotated 4 out of
a total of 345 source images by hand. For semantic segmenta-
tion we used the DeepLabV3+ network architecture of (Chen et
al., 2018), retraining their Xception65 architecture model pre-
trained on the CityScapes autonomous drivingdata sett (Cordts
et al., 2016) on our manually annotated data.

Figure 5. Comparison of the cleaned (but untextured) 3D
geometry on the left with the raw, textured 3D reconstruction on
the right. Cars, trees, and elements of street infrastructure (class

clutter), visible on the right, are missing on the left side.

Fusion of the 3D reconstruction with the 2D semantic segment-
ations on the aerial images was done using the approach de-
scribed in section 3.2 with our customized OctoMap using a leaf
node size of 20cm. After automatic segmentation, a few areas
(<10) had to be corrected manually due erroneous semantic la-
beling consistent in all aerial views. We were able to do this by
applying simple handcrafted filters based on heuristics such as
height over ground level and orientation of the normal vector
relative to the z-axis in those areas.

As a last step of processing the point cloud before meshing and
simulation, we cleaned it using the algorithm outlined in 3.3.
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Figure 5 shows a comparative view of the 3D model before and
after cleaning.

We used the meshing tool ANSYS® ICEM®to prepare the
geometry to obtain the appropriate surface model for generating
the numerical mesh within a single fluid domain. The explos-
ives were placed near a square in the center of the reconstructed
3D geometry (cf. Figure 6), the simulation was performed four
times with charge sizes of 1 kg, 10 kg, 100 kg and 1000 kg of
TNT equivalents, respectively.

Explosive charge size

Figure 6. Location of the explosive charge in the center of the
city.

The numerical results provide a complete pressure estimation
of the time course for the expected blast wave propagation. Ex-
emplary, the expansion of the blast wave is shown at four points
in time for the scenario of 1000 kg of TNT equivalent charge in
Figure 7.

Time = 0.0500s] Time = 0.1500s]

Pressure [Pa]
10000.00

7500.00

Time =0.2500]s]

5000.00

2500.00

0.00

Figure 7. Estimation of the expected pressure propagation over
time for 1000 kg of TNT equivalent.

Using this result, we can query the areas at which a certain pres-
sure is reached or surpassed, generating map layers showing the
different damage zones for the specific scenario on top of other
GIS sources. Figure 8 shows a comparison of the damage zones
for scenarios of 10 kg and 100 kg TNT equivalent charge, over-
layed on the street map (map data courtesy of OpenStreetMap)
in QGIS. It is apparent from the comparison of the maps that the
damage radius does not scale linearly, neither for the area where
a certain absolute maximum pressure is reached or surpassed,
nor for the maximum propagation. Channeling effects due to
urban canyons are visible. In the detailed view in Figure 9,
unexpected areas of higher pressure comparatively far from the
center of the explosion, beyond ares with lower maximum pres-
sure, are visible. These effects occur due to deflection and ram

e . : \
= = damage .

o e . i o = zones =

1 1 psi
= [12psi
At ORI | 13 psi
: ~ 15 psi
) s Y 77110 psi
1 20 psi

Figure 8. Comparison of damage zones overlayed on a street
map for charge sizes of 10 kg (top) and 100 kg (bottom).

pressure effects caused by buildings.

H !

Figure 9. Detailed view of the damage zone for the scenario of a
1000 kg explosive charge. The simulation reveals disconnected
areas of expected glass damage (blue areas) far away from the
center of the detonation.

A more robust evaluation can be seen in figure 10 for the case
of 10 kg of TNT equivalent, where the damage zones are shown
as the convex hull over all areas of a certain damage zone, again
overlayed over the street map in QGIS.

As a quantitative analysis, Table 2 compares the total area of the
destruction zones of all four scenarios. Again, a non-linear re-
lation between charge size and affected area, as well as between
maxima in reached pressure, are visible.

As a further application of the explosion simulation, we evalu-
ate the amount of expected window breakage in the direct vicin-
ity of the square where the virtual charges have been placed. To-
wards that task, we started by detecting windows on the build-
ing facades in terrestrial images registered to our 3D reconstruc-
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Figure 10. Comparison of the depiction of the convex hull of the
damage zones with their original estimate for the case of 10 kg
equivalent charge size.

Table 2. Areas in m? within destruction zones depending on the

charge size

peak pressure  1kg 10kg 100kg 1000 kg
Ipsi 505 2370 12700 53500

2psi 270 1160 5120 23000

3psi 185 690 2880 15800

5 psi 70 370 1490 7380

10 psi 15 100 830 3750

20 psi 3 90 420 1650

tion. Again, we retrained a DeepLabV3+ segmentation network
pre-trained on the CityScapes autonomous driving corpus on a
few manually annotated training images taken of the facades
surrounding the square. Fusing the window detections with the
reconstructed city model as detailed in section 3.2 (using a se-
mantic resolution of 15 cm) allows us to determine their geore-
ferenced locations and thereby to correlate their positions with
the respective damage zones corresponding to glass damage in
the four simulated scenarios. In total, 367 windows were de-

Figure 11. A comparison of the damage zones of 1 psi on a
facade. The damage zone is overlayed in red on the geometry,
broken windows are highlighted in bright red, those expected to
survive the blast in green. On the left side the scenario of 1 kg
TNT, on the right side that of 10 kg TNT is shown.

tected around the square. In accordance with the damage clas-
sification of (Glasstone, Dolan, 1977) (cf. Table 1), windows
less than 0.5 meters away from the 1 psi pressure zone were
assumed to be broken. Table 3 compares the expected number
of broken windows around the square and the total area of glass
broken by the explosion of the respective charge size. Con-

Table 3. Number and glass area of broken windows in each
scenario of a total of 367 windows detected around the square.

1kg 10kg 100kg 1000 kg
broken windows 48 105 319 363
broken glass [m?] 115 235 630 685

cerning the comparatively small increase from 319 to 363 prob-
ably destroyed windows it has to be noted that only windows
around the square were detected, yet the 1 psi pressure range
of the blast wave resulting from the 100 kg scenario fills the
square already almost completely, while the one from the 1000
kg scenario outreaches it by far. Figure 11 shows the qualitat-
ive difference of the number of affected windows depending on
charge sizes on selected facades for the scenario of 1 kg of TNT
equivalent charge size on the left and the scenario of 10 kg of
TNT equivalent charge size on the right. Windows outside the
1 psi pressure range are highlighted in green, the ones within
the damage zone are marked in bright red.

7. CONCLUSION

In this work, we proposed a methodology for creating recon-
structions of urban areas from aerial and terrestrial images with
automated preprocessing for use as geometry in numerical sim-
ulation of the impact of explosions in urban environments. We
showed how the results can be used to create GIS compatible
maps of areas where certain damages can be expected in differ-
ent threat scenarios which can be directly integrated into exist-
ing geographic information systems. These maps may then be
used in training of personnel involved in disaster management
or for preparation and planning in the fore run of major events.

Due to the time effort needed (adequate source images or a geo-
metry model must be available, the numerical simulation of a
single explosive expansion takes depending on the charge size
up to several days) the application is still constrained to the cre-
ation of training scenarios or in planning of major events. An
immediate application in an unforeseen crisis is not possible.

Furthermore, real-world experiments verifying the damage pre-
dictions may prove insightful, since the damage classification
used stems from an american study more than 40 years old,
where building standards and therefore damage patterns may
not be directly applicable to central Europe.
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