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ABSTRACT: 

 

Kenya is mostly affected by floods during the March-April-May (MAM) and October-November-December (OND) rainfall. This 

often occurs along river basins such as the Tana river basin, leading to disruption of people’s livelihoods, loss of lives, infrastructure 

destruction and interruption of economic activities. This study used openly available data on flood exposure, vulnerability, lack of 

coping capacity, flood impacts and observed satellite rainfall to analyse and predict forecast-based impacts in Tana river. Earth 

observation satellites including LANDSAT, sentinel 1 and 2 were acquired based on credible flood event dates to validate flood 

exposure and flood events. The community risk assessment (CRA) approach was used to delineate communities at high risk of floods 

using combination of data on vulnerability, flood exposure and lack of coping capacity. Using an ordinary least squares (OLS) 

predictive model, observed satellite rainfall was used as a covariate in order to predict flood impacts on communities with high flood 

risk scores in Tana river. Weighted scores from the CRA dimensions were summed up with forecasted hazards from the OLS model 

in order to derive a flood impact-based forecast. The flood impact information is to be used in forecast-based action through early 

warning, early action protocols thereby reducing impacts of potential floods in communities living in high flood risk areas based on 

the flood risk map. 

 

 

1. INTRODUCTION 

1.1 Forecast-based financing 

Predictable extreme weather events such as floods lead to 

disasters that are often intensified by climate change. The 

impacts of these events can be mitigated if climate forecasts are 

thoroughly utilised for early action in order to prepare for 

disasters. Despite the availability of climate forecast, 

communities, governments and humanitarian agencies always 

act after a flood occurs. Yet there exists a window of 

opportunity between when a forecast issued and when the 

hazardous event occurs, where early actions can be taken to 

cushion the most vulnerable from the impacts of a flood.  

 

Recognizing this window of opportunity and taking advantage 

of advances in science, data and technology, humanitarian 

organisations such as the Red Cross Red Crescent Movement 

have developed and piloted an approach known as Forecast-

based early Action (FbA), in partnership with meteorological 

and hydrological services and other humanitarian agencies. 

Coughlan de Perez defines FbA as when a forecast states that an 

agreed-upon probability threshold will be exceeded for a hazard 

of a designated magnitude, then an action with an associated 

cost must be taken that has a desired effect and is carried out by 

a designated organization (Coughlan de Perez et al., 2015). 

 

The FbA approach seeks to jointly develop standard operating 

procedures with key stakeholders where each stakeholder 

commits to undertake certain actions aimed at reducing the 

impacts of a hazard, when a forecast is issued. For example, in 

2013, the Ugandan Red Cross Society with funding from the 

German Red Cross Society worked with communities in 

Northern Uganda and national flood management stakeholders 

to define the actions that could be taken prior to a flooding 

event (Stephens & Erin, 2015).  

 

1.2 Flooding in Kenya 

Flooding in Kenya has been regularly documented since 

independence. The most severe flooding occurring in 1962-64 

dubbed the “Uhuru” floods as it coincided with independence 

(Opere, 2013). Followed by the 1997 floods occasioned by the 

El Nino phenomenon, and most recently in 2015 and 2018 

where severe flooding was observed across the nation. While 

these extreme events were felt nationwide, in the intervening 

years, floods have been observed in Kenya’s five river basins 

particularly in the Western Kenya Lake Victoria basin and the 

Tana River Basin, which is the focus of this paper. 

 

Kenya is mostly affected by floods during the March-April-May 

(MAM) and October-November-December) OND rainfall 

(Nicholson, 2017),(Gamoyo, Reason, & Obura, 2015). This 

often occurs along wetland agro-ecological production systems 

such as Athi and Tana river basins (Leauthaud et al., 2013), 

leading to loss of lives, disruption of people’s livelihoods, 

infrastructure destruction and interruption of economic 

activities. The most recent major flood in Kenya occurred 

during the 2018 MAM rainfall (United Nations Office for the 

Coordination of Humanitarian Affairs (OCHA), 2018). These 

led to displacement of over 150,000 people, 72 deaths, 33 

injuries in 12 counties, namely; Wajir, Turkana, Garissa, Isiolo, 

Mandera, Marsabit, Narok, West Pokot, Samburu, Tana River, 

Kisumu and Taita Taveta (The International Federation of Red 

Cross and Red Crescent Societies (IFRC), 2018), (United 

Nations Office for the Coordination of Humanitarian Affairs 

(OCHA), 2018).  
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The floods led to livelihood disruptions with over 6000 

livestock killed, 8450 acres of farmlands submerged in water, 

houses and infrastructure such as roads destroyed (Kenya Food 

Security Steering Group (KFSSG), 2018). 291,171 people who 

were displaced by floods in the 2018 long rains were at risk of 

disease outbreaks (UNICEF, 2018). The increase in stagnant 

water provided conducive conditions for Rift Valley fever 

(RVF), a mosquito borne viral zoonosis that mostly affected 

animals and human lives (Kenya Food Security Steering Group 

(KFSSG), 2018).  

 

The main cause of flood waters in the Tana River catchment is 

rainfall in the Upper Tana (Opere, 2013) therefore observed 

weather forecasts and river gauge levels can be used to predict 

flooding impacts in the lower catchment. This paper aims to 

obtain and analyze credible reports on flood events and impacts 

in Tana river, to collate information on temporal river gauge 

levels and observed rainfall derived from satellites for both 

Tana river and the upper catchment areas, to investigate linear 

relationship between flood impacts and observed rainfall and 

river gauge levels and to predict flood impacts using a 

predictive model. The study uses openly available datasets for 

predicting impacts thereby strengthening FbA by enabling 

unbiased and low-cost targeting of wards at risk of floods for 

early action based on a flood impact map.  

 

2. DATA AND METHODS 

2.1 Study area 

The study is conducted in Tana river county which is situated in 

the coastal part of Kenya. The county has an area coverage of 

approximately 35,375.8 km² and a population figure of 110,044 

inhabitants. The county lies at an elevation ranging between 0 to 

200 meters above sea level. Tana river’s main economic 

activities are farming and nomadic pastoralism. The county 

comprises of 3 sub counties and 15 ward administrative units.  

 

 

Figure 1. Study area map 

 

  

2.2 Data acquisition 

This research utilized data sources on flood events and impacts 

primarily from credible reports and earth observation satellites. 

Acquisition dates for satellite derived flood impacts was 

concurrent to flood event dates in Tana river. Table 1 shows a 

list of datasets used for this study, their sources and 

characteristics (units). 

 

 
Variables 

Variable name Units Source 

1 Flood event dates 
Date-month-

year 

IFRC-DREF, 

Desinventar, KRCS-

EoC and WRA 

2 Geo-coded flood impacts 

Number of 

houses 

destroyed per 

flood events 

IFRC-DREF, 

Desinventar, KRCS-

EoC and WRA 

3 Flood exposure 
Flood extent in 

acreage 

NASA and ESA / 

global disaster risk 

platform 

4 Observed rainfall 
Rainfall in 

millimeters 
CHIRPS 

5 

Vulnerability, exposure 

and lack of coping 

capacity 

Percentages KNBS 

Table 1. Data sources 

IFRC-DREF, disaster relief emergency fund reports from the 

International federation of the red cross and red crescent societies; 

KRCS-EoC, Kenya red cross society - emergency operation center; 

NASA, National aeronautical space agency’s Landsat satellite archives; 

ESA, European space agency’s Sentinel satellite archives; WRA, Water 

resource authority; CHIRPS, climate hazards group infrared 

precipitation with station data; KNBS, Kenya national bureau of 

statistics 

 

2.3 Methods 

2.3.1 Tana river flood events 

Tana river experiences major floods in the months of March-

April-May (MAM) and October-November-December (OND) 

(Gamoyo et al., 2015) due to rainfall received upstream from 

neighboring counties, namely  Meru and Tharaka. Credible 

historical flood events were extracted from the United Nations 

DesInventar disaster information management system, the 

international federation of the red cross and red crescent 

societies (IFRC) disaster relief emergency fund, Kenya red 

cross society - emergency operation center and 

Water resource authority of Kenya.  

 

2.3.2 Tana river observed rainfall 

Due to unavailability of ground weather stations from Kenya 

meteorological department in Tana river county, mean daily 

observed satellite rainfall for Tana river and the upper 

catchment areas in Meru and Tharaka counties were extracted 

from the climate hazards group infrared precipitation with 

station data (CHIRPS) (Funk et al., 2015). Observed satellite 

rainfall was acquired in tandem with reported flood events. 

 

2.3.3 Correlation analysis 

Correlation measures the amount of strength to which 

variables are linearly associated (Rubin, 2012).  Pearson’s 

correlation coefficient is used to test linearity between two or 

more variables with correlation values ranging between 1 to -1. 

Value 1 is a perfect positive correlation and -1 is perfect 

negative correlation. Zero denotes no linear association 

between the variables. The correlation analysis equation 

formula is as shown below. 

 

r= n(∑xy) – (∑x)( ∑y) / n(∑x2)- (∑x)2] [n(∑y2) – (∑y)2] 
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Equation 1 Pearson’s correlation analysis 

n is number of pairs of scores 

∑xy is sum of products of paired scores 

∑x is sum of x scores 

∑y is sum of y scores 

∑x2 is sum of squared x scores 

∑y2 is sum of squared y scores 

 

2.3.4 Ordinary least squares analysis 

An ordinary least squares (OLS) is a predictive modelling 

technique that strives to predict the value of an outcome 

variable based on one or more input predictor variables (Bruce 

& Bruce, 2017). The aim of this model is to establish a linear 

relationship between the response and predictor variable(s) in 

order to estimate the value of the response when predictor 

values are well-known. The response variable is denoted as y. 

The set of predictor variables would be denoted as x1, …, x3. 

The OLS of y on x1, …, x2 describes how y is related to x1, …, x2 

and the error term using the equation; 

 

y= β0 + β1*x1 + β2*x2 + u 

Equation 2 OLS model 

where y is number of houses destroyed by floods 

x1 is observed rainfall from Tana river 

x2 is observed rainfall from upper catchment areas 

β are unknown parameters to be estimated 

β0 is the intercept 

β1 and β2 are the slopes 

u is the error term 

The OLS model performance is to be determined by the 

coefficient of determination (R2) commonly referred to as R-

squared. R2 is a measure of goodness of fit for an estimated 

OLS equation. Values of R2 that are close to 1 indicate perfect 

fit, while values close to zero indicate poor fit. The R2 implies 

the fraction of variance for the response variable that is 

described by predictor variables in the OLS model (Myers & 

Myers, 1990). 

 

2.3.5 Flood extent maps 

Flood extent maps are derived from earth observation satellites 

from the National aeronautical space agency (NASA) and 

European space agency (ESA) archives based on flood event 

dates in order to validate reported flood events and also to 

compute the spatial distribution of floods in Tana river. The 

environment used for satellite imagery processing and 

information extraction is google earth engine (GEE) due to its 

high computation capabilities and accessibility of historical 

satellite archives in one cloud platform (Gorelick et al., 2017). 

The normalized difference water index (NDWI) (Gao, 1996) is 

used as a spectral index of choice in order to extract flood 

extents from Landsat 7 (Jain, Singh, Jain, & Lohani, 2005) 

archives between 2008 to 2012, Landsat 8 (Nandi, Srivastava, & 

Shah, 2017) archives between 2013 and 2014 and sentinel 2 (Du 

et al., 2016) archives between 2015 to 2016. Image differencing 

of sentinel 1 radar archives (Huang et al., 2018) before and 

during a flooding event is used to extract flood information for 

flood impact years of 2016 to 2018. 

 

NDWI= NIR-SWIR/NIR+SWIR 

 

Equation 3 Normalized difference water index 

Where: 

NDWI is the normalized difference water index 

NIR is the near infrared 

SWIR is the short-wave infrared 

 

2.3.6 Flood community risk assessment 

Using the index for risk management (INFORM) approach, a 

community risk assessment (CRA) approach seeks to highlight 

the most vulnerable communities, the underlying conditions that 

make these communities vulnerable to flood hazard, their 

coping capacity and if these communities are exposed to flood 

hazards or not (De Groeve, Poljansek, & Vernaccini, 2015). In 

order to delineate communities at high risk of floods a 

combination of data on vulnerability, flood exposure and lack of 

coping capacity is used to highlight communities at risk of 

flooding. Integrating analysis from rainfall forecasts with 

information generated from the flood community risk 

assessment enables the population at high risk to act ahead of 

impending floods. Components for the flood CRA are obtained 

from the Kenya national bureau of statistics (KNBS). These 

components are grouped and weighted within the 3 INFORM 

dimensions in order to give a flood risk score.  

 

Flood risk score = Vulnerability × Flood exposure × Lack of 

coping capacity 

 

Equation 4 Index for risk management formula 

 

2.3.7 Flood impact-based forecasting using statistical 

modelling  

Weighted scores from vulnerability, lack of coping capacity and 

hazard exposure from the CRA dimensions are summed up with 

hazard forecasted from the OLS model in order to derive a flood 

impact-based forecast of number of houses likely to be 

destroyed by floods. This is as illustrated in equation 5. 

 

Flood impact-based forecast = Vulnerability × Flood exposure 

× Lack of coping capacity + Flood hazard forecast 

 

Equation 5 Flood impact-based forecast 

3. RESULTS  

3.1.1 Tana river flood events 

From credible reports, flood events and impacts 

were obtained in areas along the Tana river. These 

events were spatially referenced with geographical 

coordinates in order to point out locations of where 

flooding has occurred with significant impacts 

over the years. This is as shown in figure 2. 
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Figure 1 Flood event geo-locations 

 

 
Figure 2 Flood event bar graph 

 

From the credible sources listed above, 25 flood 

events were obtained from 2008 to 2018. Most of 

the flood events were reported in 2011 as shown in 

figure 3. 

 

3.1.2 Tana river flood impacts 

The flood impact of interest for this study was houses destroyed 

by floods which according to United Nations DesInventar’s data 

dictionary is defined as number of homes that are either buried, 

levelled, collapsed or damaged to the extent that they are no 

longer habitable. Figure 5 shows the spatial distribution of 

houses destroyed by floods over the years with most impacts 

reported in Tarassa, Garsen and Bura areas. 

 

 
Figure 3 Flood impacts spatial distribution 

 

The year 2018 recorded the highest number of houses destroyed 

by floods. This is shown in figure 7. 

 
Figure 4 Houses destroyed by floods over time 

 

3.2 Tana river flood extents 

Flood extent maps were derived from earth observation 

satellites including sentinel 1, Landsat 7, sentinel 2 and Landsat 

8 based on flood event dates in order to validate reported flood 

events and flood exposure map in Tana river. This is as 

illustrated in figures 9 to 12, where flood events derived from 

NDWI and image differencing gave concrete evidence of flood 

occurrence in the various flood event dates. 

 
Figure 5 2018-03-17 Sentinel 1 flood extent 

 
Figure 6 2015-11-16 Sentinel 2 flood extent 
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Figure 7 2016-04-05 Sentinel 1 flood extent 

 
Figure 8 2014-11-16 Landsat 8 flood extent 

3.4 Tana river observed rainfall 

Due to unavailability of ground weather stations in the Tana 

river county, mean daily observed satellite rainfall for Tana 

river and the upper catchment areas in Meru and Tharaka 

counties were extracted from the climate hazards group infrared 

precipitation with station data (CHIRPS) (Funk et al., 2015). 

Observed satellite rainfall was acquired in tandem with reported 

flood events from 2008 to 2018. The highest observed rainfall 

in Tana river was in the 2015 flood event.  

 

 
Figure 9 Tana river observed rainfall over time 

 

3.5 Flood community risk assessment 

From the flood community risk assessment most households are 

located in Madogo, Chewani and Kipini East. 

 

 
Figure 10 Households in Tana river 

 
Figure 11 Tana river flood exposure 

From the flood exposure layer, Garsen west, Kinakomba and 

Chewele are the most flood exposed wards in Tana river. 
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Figure 12 Vulnerability and lack of coping capacity 

Kipini west and Wayu are the most vulnerable wards. Wayu, 

Chewele and Bangale wards lack capacity to cope with floods. 

 
Figure 13 Flood risk score 

Flood INFORM scores from vulnerability, lack of coping 

capacity and hazard exposure from the CRA dimensions were 

calculated with a multiplicative equation where each dimension 

was treated equally. Wayu, Garsen central and Chewele are at 

high risk of floods. 

 

4. DISCUSSIONS 

4.1 Discussions of results from correlation analysis 

Pearson’s correlation analysis was utilized in this study in order 

to test for linear association between number of houses 

destroyed and the predictor variables. Table 2 shows the linear 

correlation coefficients results from the analysis. 

 

 
Houses destroyed 

Houses destroyed 1 

Tana river precipitation -0.212 

Meru and tharaka precipitation 0.233 

 

Table 1 Correlation matrix 

 

A negative association of 0.212 exists between destroyed 

houses and observed rainfall in Tana river revealing that the 

lower the houses destroyed the higher the observed rainfall in 

Tana river. A positive association of 0.233 exists between 

destroyed houses and observed rainfall in upper catchment areas 

revealing that the higher the houses destroyed the higher the 

observed rainfall in the upper catchment areas. 

 

4.2 Discussions from OLS model 

Observed satellite rainfall was used as predictor variables while 

number of houses destroyed by floods was used as the response 

variable. An OLS model was used to link the predictor variables 

with number of destroyed houses. Significance levels (as p-

values) were computed for each of these predictor variables 

where the probability level of each variable was set at p < 0.05. 

The predictor variable was used to predict number of destroyed 

houses using an OLS model in order to ascertain whether 
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observed rainfall positively or negatively influence houses 

destroyed.   
variable Estimate Pr(>|t|) 

(Intercept) (Intercept) 1195.338 0.14558 

Tana river 

precipitation 

precipitatio

n 

-106.8 0.26677 

Meru and Tharaka 

precipitation 

meru_thara

ka_precipit
ation 

46.06881 0.22852 

 

Table 2 OLS outputs 

 

From the OLS model estimates in table 3, observed rainfall in 

Tana river has a negative influence on the number of houses 

destroyed while observed rainfall in the upper catchment areas 

of Meru and Tharaka counties having a positive influence on 

number of houses destroyed by floods. The model has an R2 of 

0.25 meaning 25% of the variation is explained by the OLS 

model and the rest is due to error, therefore the model has a 

good fit. 

 

4.3 Predicting flood impacts at high risk areas 

Given a credible rainfall forecast in Tana river and the upper 

catchment areas, the OLS model would then be used to predict 

flood impacts in Wayu, Garsen central and Chewele which are 

at high risk of floods based on the flood community risk 

assessment. 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

The results based on correlation coefficients suggest a positive 

correlation between number of houses destroyed by floods and 

observed rainfall in the upper catchment areas. Model estimates 

from the OLS analysis give indications that observed rainfall 

from the upper catchment areas positively influence the number 

of households destroyed by floods. This suggests that flood 

impacts in Tana river are mostly due to heavy rainfall received 

in the upper catchment areas. However, these results are not 

statistically significant. This means that no inferences could be 

derived from the model as p-values from the covariates are 

greater than the predefined threshold of 0.05. These results 

could be attributed to a low sample size achieved (25 flood 

events) in collection of historical flood events from the listed 

credible sources. Worth noting is that flood impacts can be as 

good as the predictor weather variables. This study recommends 

sourcing for other predictor variables that measure rainfall in 

Tana river and the upper catchment areas. The study also 

recommends sourcing for other flood impacts from other 

credible sources such as media reports to improve sample 

power. This will aim at improving model performance for a 

better prediction of flood impacts in Wayu, Garsen central and 

Chewele wards which are at high risk of floods based on the 

flood community risk assessment.  
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