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ABSTRACT: 

 

In order to mitigate environmental risk in Thailand it is essential to understand where and when specific geographic areas will be 

exposed to individual and multiple natural hazards. However, existing national scale approaches to natural hazard risk assessment are 

poorly adapted to deal with multiple hazards where significant uncertainties are associated with input variables and prior knowledge 

of the spatiotemporal nature of hazards is limited. To overcome these limitations, a geospatial approach has been developed that 

integrates machine learning within a GIS environment. Four hazards were investigated by Naïve Bayes while multiple hazards and 

their causalities were analysed via a Bayesian Network. Geospatial and Earth observation data representing past hazard events and 

their trigger variables were analysed to derive the probability of a hazard. Results revealed that lowland areas covering 22,868 and 

139,193 km2, or 5% and 29% of total lowland areas were at-risk at a 90% probability-level of floods in rainy-seasons and droughts in 

the summer. High mountains and the plateaus were exposed to landslides over 90% probability in rainy, and forest fires in summer 

with over 60% probability, covering 37,727 and 40,069 km2, respectively. Within the Bayesian Network four relations of multiple 

hazards were investigated. At a 90% significance level approximately 190,250 km2 was at risk from a combination of forest fires and 

droughts. At a 80% or greater probability, 161,450, 120,027, and 102,628 km2 of land were at risk from a combination of 1) floods 

and landslides, 2) forest fires, floods, and landslides, and 3) all four hazards, respectively. The results were then used to produce the 

first fine-spatial scale multi-hazard assessment to support national policies on risk mitigation. 

 

 

1. INTRODUCTION 

Thailand routinely experiences intense natural hazards and also 

many coincident multi-hazard disruptions that cause enormous 

human impact and economic losses (DDPM, 2013b; DDPM, 

2014). The spatiotemporal pattern of natural hazards are 

associated with topographical characteristics and climate 

conditions (TMD, 2015a; TMD, 2015b). In the rainy season, 

people living in areas of significant topographic relief are 

threatened from landslides after heavy rain, while flat plains are 

often overwhelmed by flooding. In the summer season many 

areas are subject to prolonged droughts that cause water 

shortages and forest fires. There is often the risk of coincident 

multi-hazard events, particularly debris flow and debris flood in 

several provinces such as Phrae (May 2001), Phetchabun (August 

2001), and Uttaradit (May 2006); events have caused hundreds 

of deaths and over hundred million Thai baht of losses, or £2.60 

million  (DMR, 2011c; DMR, 2015; DMR, 2016b).  

 

An investigation of areas that will be exposed to individual and 

multiple natural hazards is required for risk mitigation in the 

Twelfth national socio-economic development plan (2017-2021) 

of Thailand (NESDB, 2017). Natural hazards were found not to 

be independent of each other, both in space, time and causality; 

therefore, the understanding of their relations and interactions in 

a holistic manner to be able to fully quantify associated risk is 

essential risk reduction. However, existing national scale 

approaches for natural hazard assessment used in Thailand are 

mostly based on a knowledge-driven approach e.g. multi-criteria 

decision analysis and potential surface analysis (DDPM, 2007; 
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DDPM, 2011; GISTNorth, 2015; KU, 2013; ONEP, 1998; 

Waichareon, 2006; Wipulanusat et al., 2011). The approaches are 

not frequently updated and are difficult to implement. Also, the 

uncertainties from input variables and subjective evaluation that 

relies on knowledge and experience of experts can adversely 

affect results.  

 

Machine learning (ML), a subset of artificial intelligence, has 

been shown to have the potential to robustly address natural 

hazard problems (Tehrany et al., 2014; Vogel et al., 2014). ML 

algorithms, namely Naïve Bayes (NB) and Bayesian Network 

(BN) based on Bayes’ theorem rely on prior knowledge and 

learning from known input data for predicting hazard risks. These 

algorithms integrated with geospatial techniques have been used 

for assessing natural hazard risks such as landslides (Pham et al., 

2016; Tsangaratos and Ilia, 2016), floods (Liu et al., 2017), and 

forest fires (Dlamini, 2010; Zwirglmaier et al., 2013). However, 

their use for assessing the spatiotemporal risk associated with 

multiple hazards is less well developed.  

 

To address these issues, a geospatial approach employing ML for 

natural hazard assessment was developed in order to produce a 

fine-spatial scale national individual and multiple natural hazard 

risk assessment for Thailand. Geospatial and Earth observation 

(EO) data representing hazards and their trigger variables were 

used as input variables. An integrated machine learning 

algorithm and GIS-based approach were combined with expert 

prior knowledge on natural hazards, the analysis of past hazard 

events, and existing literature. 
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2. STUDY AREA AND DATA SETS 

2.1 Natural Hazard Profile of Thailand 

Thailand is geographically situated in the Southeast Asia region, 

bordered by Myanmar, Laos, Cambodia, Malaysia, the Gulf of 

Thailand, and the Andaman Sea (Figure 1). The country is under 

the influence of the seasonal monsoons, the Inter Tropical 

Convergence Zone (ITCZ), and several cyclones (TMD, 2015a; 

TMD, 2015b; TMD, 2017). The southwest monsoon (SW) 

contributed abundant rainfall between May-October, or rainy 

season, and causes individual and multi-hazard disruptions in the 

upper part of the country (DDPM, 2013a; DDPM, 2013b; 

DDPM, 2014; NESDB, 2011). Between November and 

February, the northeast monsoon (NE) brings cold and dry air 

from China during the winter season. This combined with ITCZ 

and cyclones causes heavy rainfall and rainfall-induced 

landslides in southern regions (DMR, 2016a; TMD, 2015a; 

TMD, 2015b). The summer is a transitional period between the 

SW and the NE monsoons. During this period the weather 

becomes warmer and drier with a maximum temperature of 40°C 

(TMD, 2015a; TMD, 2015b; TMD, 2017). The climate 

conditions combined with topographical characteristics cause 

hydro-meteorological hazards in Thailand, accounting for 

enormous impacts to people, farmlands, infrastructure, and 

economic (TMD, 2015b).  

 

 

Figure 1. Thailand and its neighbours with the monsoons and 

cyclones 

 

2.2 Data Sets  

Existing geospatial and EO data were mainly used in this study. 

These data were categorized into 2 main groups: past hazard 

events and their triggering variables. Flood inundation (GISTDA, 

2016), landslide scars and flash flood-prone area (DMR, 2011a; 

DMR, 2011b; DMR, 2011c; DMR, 2011d; DMR, 2015; DMR, 

2016b), drought events derived from a combined satellite index 

from MODIS-MYD09A1 and MOD13A2, and monthly burnt 

areas from MODIS-MCD64A1 (LPDAAC, 2017) were used to 

characterise past hazards. Geospatial data on rock types, soil 

groups, streams and rivers, groundwater, temperature, relative 

humidity, roads, villages, irrigation zone, existing land use, and 

EO data, including daily precipitation from GSMaP 

(EORC/JAXA, 2017), SRTM DEM 90 m (CGIAR-CSI, 2017), 

land surface temperature (LST) from MODIS-MOD11A2, and 

vegetation health product derived from AVHRR (AVHRR-VHP) 

were compiled and used as potential factors to cause or trigger a 

hazard. For data pre-processing, ArcPy, a Python package in 

ArcGIS, was used to define projection, convert data, and spatial 

clipping of geospatial and EO data. The MODIS Reprojection 

Tool (MRT) was specifically used for processing MODIS data 

(Dwyer and Schmidt, 2006). All data were manipulated into a 

geodatabase and then converted to a raster file format with a 90-

m spatial resolution, and a WGS84/UTM zone 47N coordinate 

system.  

 

3. METHDOLOGY 

An integrated Python-based GIS approach where Naïve Bayes 

(NB) and Bayesian Network (BN) were employed for an 

assessment of the spatial probability of individual and multiple 

hazards was developed. Figure 2 shows the conceptual 

framework of an integrated spatiotemporal hazard assessment of 

individual and multiple hazards. The framework was divided into 

5 stages as described below. 

 

 

Figure 2. The conceptual framework of the individual and 

multiple hazard assessment  

 

3.1 Selecting Potential and Contributing Factors of Hazards  

The potential and contributing factors i.e. floods, landslides, 

droughts, forest fires, and multiple hazards were investigated by 

learning from past hazard events, the literature, and prior 

knowledge from intensive and extensive one-to-one interviews 

of 24 experts in Thailand. This included an investigation of 

threshold values of the factors that cause or trigger a hazard. For 

example, daily rainfall over 100 mm on a slope over 30 degree 

has been shown to act as a trigger of landslides (DMR, 2011d). 

These threshold values were then used to classify precipitation of 

GSMaP data and SRTM DEM before input into the model. This 

stage was also performed for all hazard triggers.  

 

3.2 Data Pre-processing and Transformation  

The NB and the BN models employ discrete variables; therefore, 

data pre-processing and transformations were required. 

Continuous data were converted to categorical data, while re-
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quantisation was used for certain discrete data types to generate 

categorical groups. For ease of data processing in Python, the 

original values of geospatial data and multi-raster files were 

transformed to a numeric scale. For example, slopes below 30 

degrees and slopes equal to or above 30 degrees as a trigger 

variable of landslides were transformed to 1 and 2. For an 

assessment of multiple hazards based on Boolean variables, 

threshold values of slopes were transformed to 0 and 1, 

representing non-contributing and contributing trigger values for 

a hazard.  

 

3.3 Individual Hazard Assessment by Naïve Bayes (NB) 

The NB is a simple probabilistic ML classifier with the naïve 

assumption of independence between the factors. It assumes that 

all attributes are fully independent given the output class. Its 

advantage is its fast performance with less training data for 

supervised classification. Therefore, the NB algorithm was 

implemented for individual hazards. The NB classifier based on 

Bayes’ theorem is computed as equation 1.  

 

𝑃(𝐴|𝐵)  =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(1) 

 
where, P(A) is the prior probability of the event A, P(B) is prior 

probability of the event B, P(B|A) is the likelihood probability of 

B given A, and P(A|B) is the posterior probability of A given B 
 

In this study, this theorem is applied for floods, landslides, 

droughts, and forest fires by determining how often a hazard 

occurs when potential factors cause or trigger a hazard. For 

example, the event of flooding was investigated when rainfall 

happens. Firstly, the prior probability was derived from the 

proportion of the events of flooding (F) and non-flooding (~F) in 

a training dataset. The likelihood probability was then calculated 

from each class of rainfall conditions (R) for F and ~F. Lastly, 

the posterior probability of both F and ~F was calculated from 

the probability of F and ~F given R by multiplying the prior and 

the likelihood probability (Mitchell, 1997). The results of both 

P(F|R) and P(~F|R) were equal to 1; therefore, they were 

normalized to maximize the posterior probability as equation 2. 

This probability ranging between 0-1 was used to generate a map 

of individual hazard assessment. 

 

𝑃(𝐹|𝑅)  =  
𝑃(𝐹|𝑅)

𝑃(𝐹|𝑅) + 𝑃(~𝐹|𝑅)
 

(2) 

 

where, P(F|R) is the posterior probability of F given R, P(~F|R) 

is the posterior probability of ~F given R 

 

3.4 Multiple Hazard Assessment by Bayesian Network (BN) 

3.4.1 Learning and Constructing the BN Structure and Its 

Nodes: A directed acyclic graph (DAG) demonstrating the 

qualitative relationships between hazards and vulnerabilities was 

developed through expert knowledge and from an analysis of past 

events. In this study, the relationships between floods, landslides, 

droughts, and forest fires from dry to wet periods were 

investigated. 

 
In dry period, the causalities between human-caused fires and 

droughts were presented by forest fires, humidity, temperature, 

vegetation losses, soil moisture, annual rainfall, and droughts. 

Fires caused low humidity, high temperature, and losses of 

vegetation cover that resulted in low soil moisture in burnt areas 

and their surroundings. These conditions together with low 

rainfall resulted in droughts. The network of floods and 

landslides considered as multiple hazards during wet periods was 

investigated by soil moisture, cyclones, daily rainfall, 3-day 

rainfall accumulation, floods, slope, and landslides. Cyclones 

caused heavy daily rain, high rainfall accumulation, and floods in 

combination with high soil moisture and steep slopes triggering 

landslides.  

 
In the seasonal transitional period between April and May, the 

network of forest fires, floods, and landslides was developed 

where forest fires, vegetation losses, soil moisture, cyclones, 

daily rainfall, 3-day rainfall accumulation, floods, slope, and 

landslides were employed. Loss of vegetation cover in burnt 

areas results in a dramatic decline in soil moisture (Chankaew 

and Kurat, 1976). Dry soil is easily eroded by heavy rainfall or 

rainfall accumulation induced by cyclones and floods. These 

conditions combined with steep slopes trigger landslides in 

susceptible areas. Overall, all relationships of four hazards and 

their relative vulnerabilities were constructed in the overall DAG 

structure as shown in Figure 3. 

 

 

Figure 3. The DAG presenting the causal relationships of forest 

fires, droughts, floods, and landslides 

 
3.4.2 Determining the variables of nodes in the BN 

structure: The variables representing in the DAG nodes were 

determined by geospatial and EO data. Past hazard events were 

used to characterize forest fires, droughts, floods, and landslides. 

Climatic conditions of relative humidity, maximum temperature, 

and the frequent cyclone-prone areas were used to characterize 

humidity, temperature, and cyclones, respectively. Annual 

rainfall, daily rainfall, and 3-day rainfall accumulation derived 

from GSMaP was processed and used in nodes of annual rainfall, 

daily rainfall, and 3-day rainfall accumulation, respectively. 

Existing land use, soil moisture from LST-MODIS data, and 

slope degree extracted from SRTM-DEM data were used in 

nodes of vegetation losses, soil moisture, and slope, respectively. 

 
3.4.3 Computing the Conditional Probabilities and the 

Joint Probability Distribution (JPD): After constructing the 

DAG, the quantitative relationships between nodes were derived 

through a conditional probability table (CPT). The conditional 

probabilities are the probability of the event A given the event B 

and can be calculated as the joint probability of 2 events 

occurring divided by the probability of the event B. The CPT of 

the nodes denoted the relations of the parent nodes to their child 

nodes. Illustrated by Figure 3, the conditional probabilities of all 

variables in the DAG were demonstrated by the JPD and 

calculated using equation 3.  
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𝑃(𝑋) = ∏ 𝑃(𝑋𝑖|𝐶𝑖)

𝑛

𝑖=1

  
 (3) 

 

where, P(X) represents the JPD of the nodes in the DAG, P(Xi|Ci) 

presents the joint probability distribution of the parent Ci given 

Xi, and n represents hazards and their potential factors in the BN 

 

3.5 Generating Maps of Individual and Multiple Hazards 

Table 1 shows an example of the results derived from the NB 

model saved to a CSV format for flooding. For example, the 

probability of 0.9786, or 98% was with the condition of daily 

rainfall over 90 mm, elevation below 100 m, agricultural land, 

well drained soils, drainage density over 1.00 km/sq.km., water 

obstacle over 6.0 km/sq.km, and the proximity to rivers below 

2,364 m. These classes from each variable represented by 

geospatial and EO data were used for generating a map of 

individual and multiple hazard assessment.  

 

4.  RESULTS AND DISCUSSION 

4.1  Mapping Individual Hazard Assessment 

Figure 4 shows maps of individual spatiotemporal hazard 

assessment and Table 2 presents the areas categorised by the 

probability. A description of each hazard is described as follows. 
 

 

Figure 4. Maps of a spatiotemporal individual hazard 

assessment presenting the probability between 0-1 
 

 

No. 
Potential and contributing factors 

Probability 
Daily rain Elevation Land use Soil drainage Drainage density Water obstacle Proximity to rivers 

1 > 90 mm < 100 m Agricultural land Well drained >1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.978634230 

2 > 90 mm < 100 m Agricultural land Well drained >1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.977631232 

3 > 90 mm < 100 m Agricultural land Well drained 0.70-1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.977194059 

4 > 90 mm < 100 m Urban and built-up land Well drained 0.36-0.70 km./sq.km >0.6 km./sq.km < 2,364 m 0.973642437 

5 > 90 mm < 100 m Agricultural land Well drained 0.36-0.70 km./sq.km >0.6 km./sq.km < 2,364 m 0.972411709 

6 > 90 mm < 100 m Urban and built-up land Well drained >1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.972199544 

7 > 90 mm < 100 m Agricultural land Well drained 0.36-0.70 km./sq.km >0.6 km./sq.km < 2,364 m 0.971875461 

8 > 90 mm < 100 m Urban and built-up land Well drained >1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.970903455 

9 > 90 mm < 100 m Agricultural land Well drained >1.00 km./sq.km >0.6 km./sq.km < 2,364 m 0.970338785 

10 > 90 mm < 100 m Urban and built-up land Poorly drained 0.36-0.70 km./sq.km >0.6 km./sq.km < 2,364 m 0.968890085 

Table 1. An example of flood probability derived from the developed model in a CSV format 

4.1.1  Flood Assessment: The highest probability of floods 

was 0.98. A 90% probability covered approximately 22,868, 

22,249, and 22,265 km2 of rainy, winter, and summer seasons, 

respectively. The spatial pattern of floods was mainly in low 

elevation areas close to rivers, particularly in the lower north 

region continuing to the central plain, and some coastal areas in 

the east of Thailand. The former area was subject to floods in 

rainy while the latter was highly exposed to floods in winter and 

summer seasons. This resulted from the NE monsoon in 

combination with ITCZ and cyclones contributing heavy rainfall 

in the east coast of Thailand. 
 

4.1.2  Landslide Assessment: The highest probability was 

0.99, with over 90% probability covering 37,727, 31,690, and 

38,271 km2 of rainy, winter, and summer seasons, respectively. 

These areas mainly found in northern and western regions and 

the mountain ridges in the south of Thailand. The temporal 

pattern of landslides and floods had the similar correlation but the 

spatial pattern of exposed areas were in high steep slope being to 

mountains and hills.   

 

4.1.3  Drought Assessment: The highest probability was 0.99, 

with a 90% probability covering 71,883 km2 of dry spell in rainy 

and 139,193 km2 of droughts in summer seasons. These areas 

were mainly in plateaus in northeastern and plains in central 

regions, and part of river basin in northern and coastal plains of 

southern Thailand.  

 

4.1.4  Forest fire Assessment: The highest probability was 

0.85, mainly in upland catchments and headwaters. 

Approximately 40,069 km2 in mountains and hills covered by 

deciduous forest in northern and central highland, northeast 

plateau, and upper western highland had a probability over 0.60. 

The temporal pattern is associated with droughts in summer; a 

transitional period between the SW and the NE monsoons, 

leading to prolonged droughts.  

 

Overall, the spatiotemporal pattern of individual hazards is 

dependent on terrain characteristics and a seasonality. Low lying 

areas were highly exposed to floods during the rainy season and 

droughts in summer, while high mountains and hills exposed to 

floods might trigger landslides in rainy season, and forest fires 

usually occurred in summer. 
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Probability 

Areas of individual hazards (unit: km2) 

Floods Landslides Droughts Forest fires 

Rainy  Winter  Summer Rainy Winter Summer Rainy Summer Summer 

0-10% 
266,863 

 (56.35%) 

269,805 

 (56.98%) 

269,515 

(56.91%) 

271888 

 (57.11%) 

267,520 

 (56.19%) 

268,017 

 (56.29%) 

0 

(0.00%) 

1,450 

(0.31%) 

273,668 

 (57.30%) 

11-20% 
36,277 

 (7.66%) 

30,393 

 (6.42%) 

34,081 

(7.20%) 

34886 

 (7.33%) 

41,395 

 (8.69%) 

36,599 

 (7.69%) 

28,152 

(6.06%) 

56,358 

(11.88%) 

56,503  

(11.83%) 

21-30% 
38,190 

 (8.06%) 

39,860 

 (8.42%) 

35,857 

(7.57%) 

22009 

 (4.62%) 

21,936 

 (4.61%) 

21,692 

 (4.56%) 

72,932 

(15.70%) 

59,676 

(12.58%) 

24,087  

(5.04%) 

31-40% 
20,392  

(4.31%) 

20,970  

(4.43%) 

22,368 

(4.72%) 

17394  

(3.65%) 

14,974 

(3.15%) 

18,216  

(3.83%) 

35,133 

(7.57%) 

16,740 

(3.53%) 

30,992 

 (6.49%) 

41-50% 
19,408  

(4.10%) 

17,843 

 (3.77%) 

15,945 

(3.37%) 

17203  

(3.61%) 

16,588 

(3.48%) 

18,627 

 (3.91%) 

33,052 

(7.12%) 

18,598 

(3.92%) 

26,678 

 (5.59%) 

51-60% 
22,121  

(4.67%) 

26,531 

 (5.60%) 

26,229 

(5.54%) 

14961 

 (3.14%) 

13,029 

 (2.74%) 

15,630  

(3.28%) 

38,204 

(8.23%) 

36,243 

(7.64%) 

25,578 

 (5.36%) 

61-70% 
15,895 

 (3.36%) 

14,133  

(2.98%) 

15,624 

(3.30%) 

14472 

 (3.04%) 

18,222 

 (3.83%) 

12,917 

 (2.71%) 

50,563 

(10.89%) 

17,414 

(3.67%) 

30,620  

(6.41%) 

71-80% 
7,053 

 (1.49%) 

9,035 

 (1.91%) 

5,974 

 (1.26%) 

17608 

 (3.70%) 

16,471 

 (3.46%) 

20,996 

 (4.41%) 

59,124 

(12.73%) 

67,450 

(14.22%) 

6,542 

(1.37%) 

81-90% 
24,480 

 (5.17%) 

22,725 

 (4.80%) 

25,686 

(5.42%) 

27953 

 (5.87%) 

34,277 

 (7.20%) 

25,138  

(5.28%) 

75,357 

(16.23%) 

61,256 

(12.91%) 

2,907 

(0.61%) 

over 90% 
22,868  

(4.83%) 

22,249 

 (4.70%) 

22,265 

(4.70%) 

37727 

 (7.92%) 

31,690 

(6.66%) 

38,271 

 (8.04%) 

71,883 

(15.48%) 

139,193 

(29.34%) 

0 

(0.00%) 

Table 2. Areas of a spatiotemporal individual hazard assessment categorized by the probability 

 

4.2 Mapping Multiple Hazard Assessment 

Four observed relations of forest fires, droughts, floods, and 

landslides were investigated following seasonality. They were 1) 

forest fires and droughts (MH1), 2) floods and landslides (MH2), 

3) forest fires, floods, and landslides (MH3), and 4) forest fires, 

droughts, floods, and landslides (MH4). Due to a difference of 

minimum and maximum values, the probability of these four 

relations was normalized between 0-1 in order to compare the 

spatial pattern of each relation. Figure 5 shows maps of the multi-

hazard assessment categorized by their relationships and Table 3 

shows the areas of a multi-hazard assessment. 

 

 

Figure 5. Maps of a spatiotemporal multi-hazard assessment 

presenting the probability between 0-1 

Probability 
Areas of multiple hazards (unit: km2) 

MH1 MH2 MH3 MH4 

1-10% 
157,509 

(30.78%) 

101,221 

(19.72%) 

193,686 

(37.76%) 

308,257 

(60.24%) 

11-20% 
115,893 

(22.65%) 

72,967 

(14.21%) 

112,843 

(22.00%)) 

39,469 

(7.71%) 

21-30% 
48,043 

(9.39%) 

104,945 

(20.44%) 

49,302 

(9.61%) 

34,072 

(6.66%) 

31-40% 
0 

(0.00%) 

77,777 

(14.18%) 

37,148 

(7.24%) 

27,260 

(5.33%) 

41-50% 
0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

51-60% 
0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

61-70% 
0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

71-80% 
0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

0 

(0.00%) 

81-90% 
0 

(0.00%) 

44,053 

(8.58%) 

28,979 

(5.65%) 

17,597 

(3.44%) 

over 90% 
190,250 

(37.18%) 

117,397 

(22.87%) 

91,048 

(17.75%) 

85,031 

(16.62%) 

Table 3. Areas of a multiple hazard assessment categorized by 

the probability 

In dry period between November and April, most of MH1 with 

over 90% probability is found in the central plain, northeast 

plateau, and part of northern and western highland, covering an 

area of 190,250 km2, or 37% of total land. Between May and 

October the areas in northeast plateaus and west continental 

highlands, central highland, and part of mountains in the south of 

Thailand were exposed to MH2 in wet period with over 80% 

probability, covering 161,450 km2, or 32% of total land. The 

areas exposed to MH1 and MH2 were greater than MH3 and 

MH4, with approximately 10% difference of total land. 

Noticeably, the spatial pattern of MH1 was similar to exposed 

areas of forest fires and droughts, particularly in the upper part of 

the country. Areas in the west part of Thailand in the MH2 

showed the same spatiotemporal pattern of floods and landslides.  

 

In transitional period (MH3) between April and May, over 80% 

probability found in the northeastern plateau, and eastern 

highland, and part of northern and western highlands, covering 

120,027 km2, or 23% of total land. The overall multi-hazard 

assessment (MH4) demonstrated that approximately 102,628 

km2, or 20% of total land, mainly in northeastern and eastern 

regions, and part of lower northern and western highlands had 

over 80% probability. These areas showed the same hazard 

pattern as the wet period, except the south of Thailand. 

 

From above, most of the country was exposed to MH1 and MH2 

while the southern region showed low spatiotemporal correlation 
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among four hazards because of the difference of the climatic 

conditions and topographical characteristics. During the rainy 

season the country is influenced by the monsoons and tropical 

cyclones between May and October while the southern region 

between October and May. This resulted in high humidity and 

high soil moisture that might cause floods and landslides, so 

human-caused fires were rare due to the difficulty of setting a fire 

in tropical evergreen forest or rain forest. Relation between forest 

fires and droughts in southern region was therefore low. 

 

Overall, areas can be vulnerable to different hazards with or 

without temporal correlation. The pattern of individual hazards 

mainly depends on terrain characteristics and seasonal conditions 

such as low elevation areas exposed to floods in rainy and 

droughts in summer seasons. Conversely, an assessment of 

multiple hazards requires temporal correlation to be considered. 

Therefore, an investigation of multiple hazards and their 

relationships is an importance for determining exposed areas that 

will be harmed by more individual hazards. The different 

combinations denoting multiple hazards in different time periods 

provide the possible situations of the spatiotemporal hazard 

pattern. These results are an effective demonstration of 

investigating more individual hazards and their trigger variables. 

These can be used as a guidance of a national scale hazard 

assessment for risk mitigation in Thailand. 

 

4.3 Model Evaluation  

Sensitivity analysis is a practical method to quantify the 

uncertainties in the result from a model related to the 

uncertainties in its inputs (Aguilera et al., 2011; Salciccioli et al., 

2016). It was often used for evaluating natural hazard studies (Liu 

et al., 2016; Liu et al., 2017; Stelzenmüller et al., 2010a; 

Stelzenmüller et al., 2010b). Therefore, three empirical 

techniques were designed to validate the relationships between 

the inputs and the outputs of the given model. The results were 

then used to assess the overall sensitivity of the model compared 

with the primary analysis.  

Two techniques were used for evaluating individual hazards. The 

proportion of samples presenting a hazard and the creation of 10 

new sets of samples were designed for computing the probability 

of a hazard. These samples were randomly created and overlaid 

with past hazard events. For the first technique, the samples 

presenting a presence of a hazard were proportioned by 60%, 

70%, 80%, and 90% of the total hazard points. The set of these 

points were used to individually compute the probability of a 

hazard and the results of the probability were used to generate 

sensitivity analysis maps.  

 

For evaluating multiple hazards, the whole boundary of the 

country was manually divided into 3 parts: upper (part I), middle 

(part II), and lower (part III). Each part was used to clip all 

multiple rasters representing input variables. All rasters of each 

part were then input into the model and recomputed the 

conditional probabilities of four relations. The results were then 

used to generate a sensitivity analysis map of a multi-hazard 

assessment.   

 

To investigate the difference of the probability at each location, 

100 points were randomly created and then used to extract 

multiple values of the probability from individual and multiple 

hazards. The statistics of mean and median were used for 

observation. The findings revealed that the average difference of 

individual hazards was -0.00166, -0.00280, -0.00036, and 

0.02235 for floods, landslides, droughts, and forest fires, or less 

than 2% probability. Compared to the probability of multiple 

hazards extracted from the full national study, there was a slight 

difference of the probability in upper and central parts, with 

below 5% probability. The probability of lower part showed a 

difference of over 10% probability for MH2, MH3, and MH4, 

with the probability of MH1 was below 5% probability. This is 

because the climate conditions of the southern region was 

different from other regions.  

 

5. CONCLUSION 

Based on the past hazard events and their potential factors, the 

spatiotemporal pattern of individual hazards is dependent on 

terrain characteristics and seasonality. Low land areas in central 

plains and plains in northeastern region were at-risk to floods 

during the rainy season and droughts in summer. High 

mountainous and hill areas of the plateaus in northern and 

western regions were exposed to rainfall-induced landslides in 

rainy season, particularly susceptible areas with high steep slopes 

while these areas were also subject to forest fires in summer. For 

multiple hazards, the causal relationships between MH1 (forest 

fires and droughts) and MH2 (floods and landslides) showed the 

high probability with large coverage areas more than MH3 (forest 

fires, floods, and landslides) and MH4 (forest fires, droughts, 

floods, and landslides).  

 

An integrated Python-based GIS approach along with NB and 

BN algorithms is able to determine the probability of individual 

hazards and the conditional probabilities of multiple hazards. The 

maps produced provide effective information of spatiotemporal 

hazard assessment and helps the understanding of causal 

relationships between hazards for prioritizing the most critical 

areas for risk mitigation. The methods developed in this study 

provide a data-driven approach for hazard assessment that can be 

applied to other areas at different scales. The approach allows 

frequent update, ease of implementation, and fast computation. 

However, there were still requirements to further enhance the 

approach to better consider contributing factors and their 

threshold values, to undertake a more detailed investigation of 

the causal relationships between hazards, and complete 

information of past hazard events.  
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