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ABSTRACT:

Increase in access to mobile phone devices and social media networks has changed the way people report and respond to disasters.
Community-driven initiatives such as Stand By Task Force (SBTF) or GISCorps have shown great potential by crowdsourcing the
acquisition, analysis, and geolocation of social media data for disaster responders. These initiatives face two main challenges: (1)
most of social media content such as photos and videos are not geolocated, thus preventing the information to be used by emergency
responders, and (2) they lack tools to manage volunteers contributions and aggregate them in order to ensure high quality and reliable
results. This paper illustrates the use of a crowdsourcing platform that combines automatic methods for gathering information
from social media and crowdsourcing techniques, in order to manage and aggregate volunteers contributions. High precision
geolocation is achieved by combining data mining techniques for estimating the location of photos and videos from social media,
and crowdsourcing for the validation and/or improvement of the estimated location. The evaluation of the proposed approach is
carried out using data related to the Amatrice Earthquake in 2016, coming from Flickr, Twitter and Youtube. A common data set is
analyzed and geolocated by both the volunteers using the proposed platform and a group of experts. Data quality and data reliability
is assessed by comparing volunteers versus experts results. Final results are shown in a web map service providing a global view of
the information social media provided about the Amatrice Earthquake event.

1. INTRODUCTION

The second generation of the world wide web, Web2.0 or the
the participatory web, as they call it, has changed the way people
report, respond or share information across the world. People
have started using the web not just as a source of information,
but also as a platform where they share, create and contribute
(Blank, Reisdorf, 2012). The increase in social media usage
and the giant leap in the technological advancement has facilit-
ated the speed, quantity and quality of first hand information at-
tained from the ground. Collective wisdom has made its strong
presence not just in scientific and humanitarian domain but also
in our day to day activities . In 2010, Haiti earthquake showed
the world how collective effort materialised in the form of a
Ushahidi1 crisis map, mapping the severity of the event and
damages caused, crowdsourced from SMS reporting and Social
media Posts. In the context of disaster response, Crowdsourced
information, combined with technical data collected about a
given emergency, can be used to improve situational awareness,
decrease response time, and assess the severity of the damage.
Crowdsourcing can boost preparedness for the times when we
least expect to need it.

Increase in crowdsourcing demanded exclusive communities or
focus groups that contributed in different aspects of crowdsourcing,
by pooling the social media contributions of the many to pin-
point trouble areas, to gather critical information, and perform

∗Corresponding author
1https://www.ushahidi.com/

time-sensitive tasks and other such micro-tasks. Digital Hu-
manitarian Network2, Stand By Task Force3, Virtual Operations
Support Team4, Crisis Mappers5, Humanitarian Open Street
Map Team6, Crowd rescue7 and GISCorps8 are few of the well
known crowdsourcing communities, who have contributed a
great deal during various disasters. While crowdsourcing is an
organisational framework and corresponds to processes for pro-
curing services from a large amount of people external to an or-
ganisation, for example communities like SBTF Human based
computation is an information processing framework and cor-
responds to methods for incorporating human intelligence into
an information processing system, for example, volunteer an-
notation of large sets of images captured during crisis (Castillo,
2016). Such emergent communities spend several man-hours,
often with no or limited tools.Over the decade, Crowdsourcing
has given raise to platforms or web based tools,like Zooniverse9

and Humanitarian Openstreet map, that invite volunteers to con-
tribute to projects developed by citizens, professionals or insti-
tutions, who are required to complete several challenging tasks
that requires human intelligence alongside machine intelligence.

2http://digitalhumanitarians.com/
3https://www.standbytaskforce.org/
4https://www.epicentermediatraining.com/vost/
5https://crisismapping.ning.com/
6https://www.hotosm.org/
7https://crowdsourcerescue.com/
8https://www.giscorps.org/
9https://www.zooniverse.org/
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By using intelligent image retrieval techniques, new techno-
logies are providing means to automatise the process and to
handle larger quantity of data in shorter time. Yet, the qual-
ity and reliability of the result are still unclear and need to be
evaluated against ground truth (Alam et al., 2018). This pa-
per proposes a hybrid approach, combining automatic extrac-
tion of relevant social media content and crowdsouring. Auto-
matic extraction is based on keyword matching and allows the
automatic extraction of locations with a NER (Named Entity
Recognition) based and disambiguation approach called CIME
(Context based IMage Recognition)(Francalanci et al., 2018).
Crowdsourcing, uses Crowd4EMS10, a facilitating platform for
coordinating volunteer contributions and creating reliable and
actionable data for disaster response.

These approaches are part of a research project Evolution of
Emergency Copernicus Services (The E2mC Project)11, fun-
ded by the European Commission through its Horizon 2020
programme . The goal of the project is to demonstrate the
technical and operational feasibility of integrating social me-
dia and crowdsourced data into the EMS Mapping and Early
Warning components. Therefore, a new EMS service compon-
ent (Copernicus Witness) designed to exploit social media ana-
lysis and crowdsourcing capabilities to generate a new inform-
ation product, ensuring the availability of relevant information
in near real time (Havas et al., 2017).

The E2mC project is a multi-component tool called Copernicus
Witness. The components include

• Data Acquisition : When initiated, the data collection com-
ponent uses automated web crawlers to funnel relevant so-
cial media posts to the crowdsourcing phase of the project.

• Data Analysis : Crowd4EMS, facilitates data enrichment
and analysis. this constitutes crowd platform that facilit-
ates validation of the social media content and refines geo-
location and classifies precision information.

• Data Visualisation : The final component is a real-time,
web-based spatial data visualizer, that helps the Coperni-
cus Emergency managers to quickly sort, filter, map and
extract data within the first critical hours of a crisis to make
decisions and develop a response strategy.

This paper discusses the data acquisition and data analysis as-
pect of the witness component and in detail the facilitating crowd
platform and its components. The paper is structured as fol-
lows. In section 2 the paper discusses the challenges faced in
data acquisition and data analysis, while outlining some related
work. In section 3 there is a detailed description of the compon-
ents of the crowd4ems platform, the experimental framework
and its application to a case study are presented. The evalu-
ation of the crowd contribution and the results are discussed in
section 4.Finally, concluding remarks and future research are
discussed in Section 5.

2. RELATED WORK

2.1 Crowdsourcing platforms in disaster response

Crowdsourcing is not a new concept, but the improvement in
technology and the increase in access to internet and the spread

10https://crowd4ems.org/
11https://www.e2mc-project.eu/

Figure 1. E2mC Framework

of social media networks across various walks of life, makes
it easier to combine technology and the available human re-
source to address the information scarcity during any disasters.
Manual geolocation of social media imagery has been proven
useful in several situations. In investigative journalism, it has
helped to verify the relevance of an image to a specific event.
During natural disasters, manual geolocation has been used to
mark accessibility features in specific areas and to enhance the
situational awareness of first responders and emergency man-
agers12.

Exisitng crowdsourcing platforms include Zooniverse, Crowd-
crafting, Sahana and ArcGIS platforms which has been proven
useful in disaster response and recovery during various human-
itarian crisis(Poblet et al., 2013) Several online crowdsourcing
communities have taken up the challenge to geolocate Social
Media content. In the field of humanitarian response, com-
munities such as Stand by Task Force and GISCorps have col-
lated, aggregated and geolocated social media data during sev-
eral natural disaster events such as Hurricane Harvey, Hurricane
Maria and Hurricane Florence. But manual geolocation is a task
very difficult to perform and hard to scale.

2.2 Social media geolocation

Geolocation refers generically to the activity of assigning a loc-
ation to an object. Automatic geolocation has long been in-
vestigated for traditional documents and web pages, often rely-
ing on Natural Language Processing (NLP) techniques. More
recently, it emerged as a fundamental topic in the context of
social media analysis, given the profound impact and the new
challenges brought by this domain (Ajao et al., 2015, Zheng et
al., 2018). Indeed, many kinds of social media analyses require
some geographical knowledge, which is often very scarce, but,
at the same time, social media texts are usually more difficult
to analyse than traditional well-structured texts. However, so-
cial media objects are typically characterised by other kinds of
(meta)data that can be exploited by automatic tools, such as so-
cial, temporal and contextual information.

Research on social media geolocation has focused on different
targets, ranging from users, posting locations and posts’ con-
tent locations. A platform such as Crowd4EMS needs to assign
(or, at least, estimate) a coherent location for posted contents,
and this is often achieved by recognising and disambiguating
locations mentioned in the text (Zheng et al., 2018).

Several approaches have been proposed for this goal. Super-
vised techniques have been described both for location recog-
nition and disambiguation (Zhang, Gelernter, 2014, Liu et al.,
2014, Ji et al., 2016, Inkpen et al., 2015). Among the main

12https://www.giscorps.org/napsg_243/
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Figure 2. Data Flow in E2mC

limitations of supervised techniques there is (1) the need of
labeled examples and (2) resulting models which do not easily
generalise on events different with respect to those seen during
training. This is particularly relevant in disaster response, since
each event is a unicum characterised by complex specificities.
Another class of techniques exploiting gazetteer insights has
demonstrated state-of-the-art geolocation performance in terms
of precision and recall (Middleton et al., 2014, Middleton et al.,
2018). However, these approaches require knowing and pre-
loading the area of the target event in advance, which is of-
ten not feasible for unexpected emergency events. While many
methods in this way reach a good precision in identifying names
of localities, associating precise geographical coordinates to a
post is still a challenge and requires further research.

2.3 Challenges faced

A major limitation of existing algorithms is reaching high pre-
cision when estimating geolocations within the range of one
kilometer or less. To overcome this limit, a growing body of
research seeks to use computer vision techniques to automatic-
ally geolocate images (Weyand et al., 2016). Advanced com-
puter vision technologies makes it possible to guesstimate the
location of an image (Hays, Efros, 2008). However, the cost of
wrongly guesstimated locations in case of a damage assessment
or disaster response could be huge. The research question that
the paper attempts to answer are the reliability and actionabil-
ity of the information processed by crowdsourcing communit-
ies. How does a facilitating platform minimizes the time taken
on each micro task and how such platform assists in aggregat-
ing and acquiring necessary information from the social media.
Geolocation of social media information has often resulted in
creating reliable and actionable data source, which can increase
the productivity of the emergency responders especially during
the early hours of a disaster. Crowd4EMS facilitates the volun-
teering communities and enables them to geolocate faster by
providing assitive features like a street view, translating com-
ponent and precision options.

3. CROWD4EMS

Crowd4EMS is the crowdsourcing platform of the E2mC pro-
ject. Social media content extracted by the CIME algorithm is
presented to the digital volunteering community via the crowd4ems
platform. The communities enrich the social media content by
validating the relevance and geolocating the social media im-
agery.

Two main goals to be addressed to provide responders with ap-
propriate information extracted from social media are:

• Selecting relevant information : A social media data is
considered relevant, if it provides useful information about
the given disaster. In this case, the need of enriched social
media data is for damage assessment. Any image creating
a situational awareness of the disaster, where the impact
of the disaster or the damage caused are clearly visible,
is considered relevant. Any image that shows no damage,
news article, weather report or even any misinformation or
a rumour is considered irrelevant.

• Geolocating : Geolocation is defined as the process of
identifying the geographical location of the information
contained in a social media post, and it usually refers to
the position of the person when the image or video was
captured or the position of the damage.

While several approaches have been proposed in the literature
to analyze and geolocalize social media in the context of emer-
gencies, the obtained results from the automatic analysis still
need to be analyzed with respect to relevance, as many posts
may be off-topic or only weakly related to the event in pro-
gress, moreover as illustrated in (Middleton et al., 2018), cur-
rent approaches still do not provide a precise localisation of the
extracted information.

However, often the text and the media associated to posts often
provide some clues that, even if they are hard to use in an auto-
matic system, can help a volunteer to assess the relevance and
the location. We propose therefore an enrichment of inform-
ation extracted from social media using crowdsourcing in two
directions: (1) increasing the relevance of data by filtering data
considered irrelevant by volunteers, and (2) Geolocating each
of the relevant social media imagery (Photo & Video).

The information to be analyzed by the crowd is extracted from
social media as illustrated in Figure 1 which presents the main
components in the E2mC framework for extracting, filtering
and enriching social media information. Figure ?? indicates
the flow of data within the E2mC framework.

3.1 Automated data enrichment

In this section we briefly illustrate the social media initial ana-
lysis steps, while in the following section we focus on the crowd-
sourcing components.

The goal of the system is to extract relevant and geolocalized
images and videos from social media. First, crawlers on social
media sources, and in particular Twitter, Flickr, and YouTube,
select potentially interesting posts with specific queries specify-
ing the period, with a 15 minutes moving window approach,
keywords specific for the type of event being considered (e.g.
floods or earthquake), and event-specific keywords that can be
added by the operators. Only posts containing visual evidence
are retained. Multilingual posts are analyzed using the Natural
Language Processing feature of Polyglot for Named Entity Re-
cognition (Al-Rfou et al., 2015) to extract Named Entities. Cur-
rently, 40 different languages are supported. Extracted posts are
memorized in a data store (currently supported by Postgres),
from which other services can extract stored information and
add evaluation tags based on microservices through data APIs.

As a basis of this work we focus here on the description of
the results of the geolocalization service called CIME (Context-
based Media Extractor) which has been developed for the pro-
ject. The CIME algorithm is briefly illustrated in (Francalanci
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et al., 2018) and its presentation is not the focus of this work.
Many services are also provided as a support to filtering relev-
ant images, to eliminate duplicates and to identify images with
a poor quality (e.g. too dark), as described in detail in (Barozzi
et al., 2019).

As most of the social media posts do not carry a native geoloca-
tion tag, the goal of CIME is to associate geographical coordin-
ates to a post. As in Crowd4EMS we have the goal of retrieving
from social media visual material, such as pictures and videos,
to get awareness of the ongoing situation, the focus of CIME
is to extract geographical coordinates for the locations men-
tioned in the posts. CIME extracts Named Entities as potential
names of locations from the text of the post using NLP Stan-
ford Core (Manning et al., 2014) and extracts potential locations
also from the metadata associated to the post, such as hasht-
ags and places. The potential names of locations and the geo-
graphical coordinates for the extracted localities and places are
retrieved using Nominatim on Open Street Map (OSM) (Hak-
lay, Weber, 2008). The hiercarchical organization of locations
in OSM and distance measures are used to disambiguate loca-
tions, selecting the most fine grained candidate localities based
on the proximity with other candidates. When the location can
not be disambiguated using a single post, the location of re-
lated posts such as replies and mentions are also taken into ac-
count. The result is one (or a set of) location name, repres-
ented with a string which mentions the location of the place
with a hierarchical structure, such as for instance “Avenida de
Machupichu, Canillas, Hortaleza, Madrid, rea metropolitana de
Madrid y Corredor del Henares, Community of Madrid, 28001,
Spain”, its geoJSON representation and the coordinates of its
center point (40.4639234,-3.6353076).

The precision of this result depends on how the location is men-
tioned in the post, and supporting evidence available for disam-
biguation. In the following we discuss how this result can be
used in crowdsourcing to improve the precision of the location
obtained using the CIME algorithm.

3.2 Crowdsourced data enrichment

It is to be noted that the Crowd4EMS federates existing online
volunteering communities instead of creating a new set of vo-
lunteers. Previous beta-testers of GeoTAGX , young digital beta
testers of Goodwall 13 and existing members of digital human-
itarian communities were involved during organised online ac-
tivations. Timed-activations as part of student workshops were
also conducted as an alternative approach. Availability and sus-
taining the interest of the community is a crucial factor in de-
termining the outcome of any crowdsourcing task.

3.2.1 Crowdsourced Relevance As mentioned before, the
data extracted from social media is presented to the volunteers
through the Crowd4EMS component to assess its relevance .
3 shows a screenshot of the CROWD4EMS relevance task for
evaluating the relevance of a tweet coming from the crawlers
(i.e. automatically processed information gathering from social
media based on keyword matching).

A tweet is atleast classified by 5 different volunteers to consider
the task as completed. There are two main approaches to val-
idate volunteers contributions in a crowd sourcing project: The
first method uses the role of a validator (i.e. experienced volun-
teer) to ensure data quality coming from new volunteers (E.g.

13https://www.goodwall.io/

Figure 3. Crowd4EMS Relevance Validation

HOTOSM). A second approach is to ask different volunteers to
do the same task a certain number of times. This number could
range from 5 to 20 evaluations E.g. Zooniverse or Crowdcraft-
ing. The quality of the data would be estimated according to the
agreement between the different volunteers. The Crowd4EMS
component uses the multi-evaluation approach to ensure the
data quality coming from the crowd. The agreement between
the users is computed using the Fleiss Kappa Algorithm(Fleiss
et al., 1971).

The Fleiss Kappa algorithm provides an agreement rate between
0 and 1 for each analysed tweet. The agreement is 1 when
all volunteers provide the same classification and is 0 if they
provide completely different classifications. A total of 238 tweets
concerning the UK Floods were evaluated by experts provid-
ing the ground truth, and the same set of tweets were evalu-
ated by the crowd. Each tweet was evaluated 5 times. The
volunteers performed 1190 classifications. Out of the 236 clas-
sified tweets, the volunteers fully agreed on 146 classifications
(61.35%), reached a high agreement on 57 classifications (23.95%),
and did not reach an agreement in 33 classifications (13.8%)
Based on the volunteers agreement, for each task computed
with the Fleiss Kappa algorithm,relevance was computed.37.3%
are considered as fully relevant, and 24.6% as completely irrel-
evant. The rest of tweets (38%) are classified with a relevance
between 0.2 and 0.8. As a summary of this analysis, 57.2%
of the tweets analyzed by the crowd represent a high degree of
relevance (i.e. equal to or higher than 0.6) . Every post that is
validated using rater-agreement as Relevant is presented again
to the crowd for Geolocation.

3.2.2 Crowdsourced Geolocation Each post that is classi-
fied as relevant by the crowd and and are with pre-suggested
geolocation tags by the CIME algorithm is presented to a min-
imum number of volunteers using Crowd4EMS in order to val-
idate, correct or improve its location. While the automated tech-
nique facilitates faster means to crawl, consolidate, and extract
relevant basic information, crowdsourcing is used to validate
and improve the reliability of the retrieved information. Loca-
tion hints provided by CIME for each post include :

• A textual string for the location (point of interest, street or
location), including the names of the area in which the data
belong - such as “Pescara del Tronto, Province of Ascoli
Piceno, Italy” shown in Figure 4.

• The geographical coordinates (latitude and longitude) of
its centroid for the positioning on a map.

Figure 4 shows a screenshot of the interface of Crowd4EMS,
that allows volunteers to geolocate images and videos from so-
cial media, starting from the geolocation information presented
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by CIME (both textual and geolocated as a point on a map).
The user interface combines all resources that are commonly
used in the process of geolocating social media content manu-
ally, namely Google maps, Google street view, direct access to
Google image search, and the link to the original post.

The users improve the precision of the geolocation based on the
visual and textual cues present in the social media post. The
users are also facilitated by additional features wherein they
can Translate the tweet if in other languages. The users can
also search google for similiar images posted or can look up
the original tweet or the social media post

4. EVALUATION

This section will discuss the activation of Amatrice Earthquake
. It will list out the need for geolocation of social media in-
formation.Two aggregation algorithms are proposed and then
compared with an expert evaluation in this section.

4.1 Aggregation algorithms for geolocation

Asking a number of volunteers to geolocate the same media
content helps improving the data quality and reliability. How-
ever, it also introduces a new challenge: how to choose the
right answer based on the volunteer contribution? This question
is particularly relevant when time constraints (imposed by the
need to obtain results in the shorter possible time) limit the stat-
istics to a few contributors for each post. Traditional methods
for inter-rater agreement such as Fleiss’ Kappa algorithm (Fleiss
et al., 1971), widely used in aggregating crowdsourced contri-
bution, can hardly be adapted here, because geospatial data is
not discrete but rather continuous - in other words, it cannot be
classified in a finite number of categories.

In this study, each post has been presented to a minimum of 3
volunteers in order to validate or improve/correct the approx-
imate location provided by CIME. Next, two aggregation al-
gorithms have been tested to calculate the location based on the
multiple answers from the volunteers: Highest precision and
Agreement aggregation.

Highest precision: this algorithm chooses the answer with highest
precision. For instance, in the case:

1. Volunteer 1 answer: Madrid

2. Volunteer 2 answer: Calle Ramon Power, Madrid

3. Volunteer 3 answer: Calle Ramon Power, 3, Madrid.

the algorithm chooses the 3rd answer, because it is the one with
highest precision. There are two main motivations behind the
algorithm. First, information geolocated with high precision
can be used in a wider range of cases. Second, if volunteers
claim to geolocate a photo or video with high precision, we
trust that either they really know the place, or the place can be
identified precisely on the basis of the text associated with the
post, or the image can be compared with images extracted from
available sources such as Google Map’s street view14.

It is worth noticing the importance of trust in this first approach,
which is motivated by knowing the experience of the volun-
teers often involved in this kind of first-response efforts (see ex-
amples in Section 2.1). However, the main limit of the highest

14https://mapstreetview.com/

precision algorithm is the robustness of the system. If one user
introduces a wrong answer claiming high precision, this will be
chosen as the location of the social media content.

Agreement aggregation aims to provide a more robust geoloca-
tion. In this case, social media content is geolocated only if
there is a minimum agreement between at least 2 users. The
agreement can happen at different levels of precision. To assess
the agreement the following rules are applied:

• Agreement on low level precision: At least 2 users agreed
on the name of the city or town. An agreement at low level
precision happens in the example above with the volun-
teer 1 and volunteer 2. The location in this case would be
“Madrid”.

• Agreement on medium level precision: At least 2 volun-
teers agree on the name of the street, river, area of the so-
cial media content. In the example above this agreement
occurs between the volunteers 2 and 3.

• Agreement at high precision level happen just when at least
2 volunteers agree upon high precision levels, i.e., the dis-
tance between the 2 suggested location coordinates (i.e.,
lat, lon) is less than 100 meters.

In the following section both the algorithms are compared against
the expert evaluation of the same dataset.

4.2 Experimental Framework

This section describes how the studies have been carried out
and the main tools used to assess the quality of the geolocation
of social media content by combining automatic and crowd-
sourcing techniques.

4.2.1 Amatrice Earthquake case study To evaluate the geo-
location quality an original dataset of 1,153 posts with images
or videos - geolocated with the CIME algorithm - was col-
lected about the Amatrice Earthquake, coming from Twitter,
Flickr, and Youtube. A total of 106 posts were validated as
highly relevant by the crowd, and used for the geolocation eval-
uation. The datasets is available from the authors on request.
The Amatrice Earthquake15 hit Central Italy on August 24, 2016.
Severe damages were reported in the towns of Amatrice, Accu-
muli, and Pescara del Tronto. It was the largest earthquake in
Italy since 2009, 299 people died, and the economic loss was
estimated between 1 and 11 Billions.

Any information denoting the severity of the disaster and its
location is key for first responders. Especially during the first
hours of the information blackout, Social media reporting could
be a great source of information. However, as most tweets/posts
are merely comments and contain very little or no informa-
tion related to the location of the disaster, analyzing the large
volume of information remains a challenging task in contrast to
the ease of acquiring it from social media platforms (Nguyen et
al., 2017).

15https://en.wikipedia.org/wiki/August_2016_Central_

Italy_earthquake
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Figure 4. Crowd4EMS Geolocation

4.2.2 The ground truth To evaluate the quality of geoloca-
tion provided by the combined approach presented in this paper,
results need to be compared with the ground truth. However, the
ground truth is unknown, as the precise locations of many posts
in social media are unknown and they will probably remain so.
In this experimental framework, the geolocation of social media
post provided by a team of 5 experts, i.e., professionals working
on disaster management, is considered as the ground truth.

To carry out the evaluation, the data set was split between the
experts to be geolocated once. They were asked to provide for
each picture, the location (lat, lon) and the precision (high, me-
dium, low). The different precision levels are defined as fol-
lows:

• High: the exact location is found, meaning the post is loc-
ated as a very accurate point on the map: building, street
number, coordinates of a road or similar precision.

• Medium: the image is taken close to the provided geoloca-
tion. It may be a street, road, path or similar.

• Low: Meaning that the precision provided is at the level of
a city, town, district, region, neighbourhood and so on.

Figure 5 shows four examples of pictures from the dataset, that
have been geolocated with different precision levels by the ex-
perts.

4.2.3 Precision and Accuracy The evaluation of geoloca-
tion in this experimental framework is based on two metrics:
precision and accuracy. In this paper, we define precision as a
qualitative metric to indicate how exact a geolocation inform-
ation is, according to the high/medium/low classification men-
tioned above. Whether a photo is geolocated at the level of the
city, street, or at the level of a point in the map. The precision
can be high, however the information can be wrong. A photo
can be classified with high precision in Rue de Lausanne, 1,
Geneva. However, the actual location of the picture could be
in a different city. Accuracy refers to the reliability of the geo-
location provided, defined as a Boolean value. Independent of

the precision provided, accuracy measures whether the inform-
ation about the location is true. Based on the comparison with
the expert geolocation, we considered a data point as accurate,
considering separately the three precision levels, according to
the following definitions:

• A photo or video geolocated with high precision is accur-
ate if it is within 100m distance for the expert geolocation.

• A photo or video geolocated with low precision is accur-
ate if the name of the city/town/village matches with the
expert evaluation.

• A photo or video geolocated with medium precision is ac-
curate if the name of the street is the same than the expert
geolocation or the distance with the expert geolocation is
less or equal to 100m.

Medium precision points have an additional complication, as
indicating a different road than the expert does not necessarily
mean the answer is “ wrong”. For instance, if we consider that
the image shows a road intersection, either road would be an
acceptable answer. In this case we also consider the geolocation
right if it is located within 100m from the expert geolocation.

4.3 Experimental Results

This section analyses the geolocation quality of social media
content by using the proposed method for images and videos
from the Amatrice Earthquake case study.

4.3.1 Expert evaluation First, we analyze the results of the
geolocation carried out by the experts, showing the extent to
which the selected social media content can be geolocated.Figure 6
shows that 49% of posts have been geolocated with a high preci-
sion, i.e., experts claimed to geolocate the social media content
with a precision of one point in the map. 10% of the posts were
located at the level of the street, road, path or similar (medium).
38% were located at the city level, e.g. a picture was taken
in Amatrice, but the experts are not able to geolocate it inside
Amatrice (low). Finally, 3% of the content was not possible to
geolocate.
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precision examples.JPG

Figure 5. Geolocation Precision Examples

Figure 6. Expert Precision

Notice that in a real scenario the expert evaluation is most prob-
ably not feasible due to the unavailability of experts to carry
out the geolocation tasks in a limited amount of time, and the
time required to geolocate the data. The experts evaluation are
used in this paper as ground truth to compare the results ob-
tained with the combination of automatic and crowdsourcing
techniques, comparing the two aggregation strategies.

4.3.2 Crowdsourcing evaluation This section compares the
expert evaluation to the evaluation coming from the crowd.The
same dataset has been presented to a crowd of volunteers through
the Crowd4EMS platform. Each post has been geolocated by
three different volunteers. This redundancy aims to improve
data quality and make the geolocation more robust against er-
rors, however it adds an additional challenge when choosing
which of the three geolocations is the best. In this section we
compare the two proposed approaches to the aggregation of vo-
lunteer answers presented in Section 4.1 , i.e.,highest precision
and agreement, to an additional offline method called optimal,

Figure 7. Crowd Vs Expert Optimal

where the geolocation retained is the closest to the expert evalu-
ation. While this optimal aggregation cannot be applied in a live
scenario, it is used here as a benchmark to evaluate the quality
of the aggregation approaches presented in this paper. The op-
timal aggregation answers the question: for each task what is
the best answer that could be provided by the volunteers?

Figure 7 shows the distance between the locations provided by
the volunteers and the experts. Most volunteer contributions
are very close to the expert geolocations, with over 70% of the
volunteers’ points within 50 m from the expert ones. Figure 8
shows the precision that can be reached with the optimal ag-
gregation benchmark, with 55% of the images classified with
high precision. Figure 9 shows the accuracy of the optimal ag-
gregation. It shows more than 90% of social media content
geolocation is considered right, following the evaluation cri-
teria presented in Section 4.2.3. Regarding the 9% of wrong
geolocations, Figure 10 shows that most of the wrong answers
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are coming from geolocations claiming high precision, i.e., the
volunteer claims to have geolocated the photo or video at the
level of the point. These geolocations are considered wrong
in our evaluation framework when the distance between the ex-
pert’s evaluation and the volunteer’s evaluation is more than 100
meters, which might be a very constrained threshold, in partic-
ular for photos with a wide area view.

Figure 8. Precision Optimal

Figure 9. Accuracy Optimal

4.3.3 Highest precision aggregation This method selects
the volunteer contribution with highest precision, ideally at the
level of one point in the map. Although this approach provides
data with higher precision (65% high precision, see Figure 11),
it does so at the expense of accuracy, as it returns 25% of incor-
rect data (see Figure 12). This can be explained as the method
assumes that a high precision answer is likely correct. In real-
ity, however, a user could select the wrong level of accuracy by
mistake, or they could be marking a very similar yet different
place than the one in the image. Unless there is a very trusted
community of volunteers, relying on a single answer is not a
good approach in terms of accuracy, because the probability of
having a wrong answer dramatically increases.Notwithstanding
this high percentage of wrong data, more than 80% of the so-
cial media content is geolocated within 500 meters of error, and
more than 56% within 50 meters (see Figure 17).

4.3.4 Agreement aggregation The agreement aggregation
only provides an answer if there is an agreement between at
least two volunteers. The Agreement aggregation improves the
accuracy with 95% of correct answers (see Figure 15), albeit
at the expense of precision, as 78% of the crowd points have
low precision (see Figure 16). When answers have different
levels of precision for a given post, the agreement needs to be
evaluated based on the lowest precision level, i.e.: if the an-

Figure 10. Accuracy by Precision Level Optimal

Figure 11. Level of precision achieved with highest precision
aggregation

swers precision levels are low, medium, high, then the agree-
ment is evaluated at the city level (low). Nevertheless, evaluat-
ing answers that have an agreement among more than one per-
son, reduces outliers in data, tightening the distance distribution
curve, and improving the accuracy. This is made more apparent
when observing the distance to expert points frequency distri-
bution (Figure 13): due to the fact that the aggregated points are
centroids of the points of agreement, less than 25% of the data is
within 50 meters from the expert points, however, this method
also returns the smallest mean (0.73 km) and max (18.12 km)
distances, as well as the smallest standard deviation (2.5 km) of
all three aggregation methods. Figure 17 summarizes the main
statistics of all three aggregations, as well as those of the CIME
algorithm results, as compared to the expert evaluation. Fig-
ure 17 shows a dramatic improvement compared with the CIME
algorithm. Namely, the highest precision algorithm is able to
geolocate more than 60% of post within 100 meters of error
(Compared with the expert evaluation), while the Agreement
algorithm provide 37% of post geolocated within 100 meters
of error. Combining CIME with crowdsourcing techniques has
the potential to geolocate more than 70% of the social media
content within 50 meters in comparison with expert evaluation.

This evaluation shows that the crowd can be very effective in
filtering out data that would be considered irrelevant, which
is very important, considering the large volumes of data that
are crawled from social media. Additionally, combining auto-
matic algorithms with the volunteers input; this data can be en-
riched by being very precisely geolocated. Using the appropri-
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Figure 12. Accuracy achieved with highest precision aggregation

Figure 13. Crowdsourcing vs Expert geolocation - Agreement
aggregation

ate data aggregation method, the crowd can locate over to 80%
of posts from social media within 500 m of the expert estab-
lished ground truth, and over 50% can be located within 50 m.
The crowd validated and geolocated social media content can
be visualised real time in a web map , that helps the Emergency
managers to quickly sort, filter, map and extract data within the
first critical hours of a crisis to make decisions and develop a
response strategy.(see Figure 14)

5. CONCLUSIONS

This paper presents a new approach to improve the geolocation
of social media content, combining automated social media text
analysis (to filter and geolocate relevant information from so-
cial media) with crowdsourcing (to improve the social media
content geolocation). The proposed approach is evaluated us-
ing data from the Amatrice Earthquake that hit central Italy in
2016.The paper presents two different aggregation algorithms
in order to estimate the content’s location from a given num-
ber of volunteers. The two algorithms behave differently in
terms of accuracy and precision of the results, and the best one
will depend on the use case requirements. The volunteers par-
ticipated on the geolocation process through an online crowd
sourcing platform, called Crowd4EMS.This paper also presents
how right tools and approaches can better facilitate the crowd
sourcing communities in providing high quality actionable data
in disaster response.
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