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ABSTRACT:

After large flood incidents in Norway, The Norwegian Water Resources and Energy Directorate (NVE), has the responsibility for
documenting the flooded areas. This has so far mainly been performed by utilising aerial images and visual interpretation. Satellite
images are a valuable source of additional information as they are able to cover vast areas in each satellite pass. In this paper a fully
automated system for detecting and delineating floods with the use of Synthetic Aperture Radar (SAR) images from the Sentinel-1
satellites is presented. In SAR images wet areas and water bodies usually show lower backscatter than dry areas. The flood detection
system is thus based on comparing a reference image acquired before the flood with the flood event image. A Sentinel-1 training
dataset has been obtained and manually annotated by NVE from three flood events in Norway. This training set has been used to
train a random forest (RF) classifier, which outputs a score for each pixel in the SAR image. This score image is thresholded in
order to obtain a crude flood detection. Unfortunately, changes in the backscatter may also be triggered by other events such as
melting snow and harvested fields of crops. To mitigate such “lookalikes”, several techniques have been implemented and tested.
This includes masking based on size, slope and “height above nearest drainage” (HAND). The experiments presented show that
the system performance is very good. Of the 179 manually labelled flood objects, 168 are detected. The system is being applied
operationally at NVE.

1. INTRODUCTION

Every year thousands of lives are affected and billions of dollars
are lost in disasters caused by flood events around the world.
Accurate monitoring systems have the potential greatly redu-
cing causalities and economic losses by providing up-to-date
information for disaster managers and the population at large.

Satellite Earth observation (EO) missions currently offer a
unique capability to observe the Earths surface in a spatially
distributed and temporally repetitive fashion at global, regional
and local spatial scales. Europe and Norway in particular, have
invested substantially in a new European Earth observation pro-
gram, Copernicus, wherein emergency management is a crit-
ical component. This service is based on timely and accur-
ate geospatial information derived from satellite remote sens-
ing. The major benefits of including analysis of satellite data in
emergency management is the huge spatial coverage of satellite
data, providing better overview of an ongoing emergency situ-
ation, and assessment of the potential damages. The informa-
tion provided by satellite data may be utilised for e.g. resource
allocation in the early phases of clean-up work.

Manual inspection of satellite data for detection and delineation
of flooded areas is time-consuming, and during flood events,
such resources are highly occupied. Hence, in order for a
satellite-based flood monitoring system to be useful, automatic
analysis of satellite data is a prerequisite. However, the devel-
opment of reliable flood detection and mapping systems is in-
herently challenging, and is an active research area [Serpico et
al., 2012, Martinis et al., 2009, Giustarini et al., 2013, Twele et
al., 2016, Martinis et al., 2015, D’Addabbo et al., 2016, Refice
et al., 2014].

Remote sensing technology has played an important role in
flood monitoring in recent years. Synthetic aperture radar
(SAR) based systems provide all-weather capability as com-
pared to the optical satellite sensors. Detection of floods in SAR

images usually relies on the hypothesis that water bodies have
very low backscatter intensity values (σ0) compared to dry land,
in particular if the wind level is not too high and the surface of
the flooded water is calm. The underlying principle for flood
detection is a pixel-wise comparison of the backscatter intens-
ities of two SAR images an event image (the one with floods)
and a reference image. Often such comparison is realized by
computing the difference between the event and the reference
images.

Change-detection techniques have been widely applied in the
literature to solve the problem of flooded-areas extraction from
SAR images [Giustarini et al., 2013,Pirrone et al., 2016,Brisco
et al., 2013, Long et al., 2014]. While [Martinis et al.,
2009] only considered a single SAR flood image to extract
pixels corresponding to open water via image thresholding
and a region-growing algorithm, Giustarini et al (2013) added
change-detection information with respect to a non-flood refer-
ence image to improve the algorithms performance. Traditional
change-detection methods, such as log-ratio, were applied to
identify changed regions from flood images. In Pirrone et al.
(2016), multi-temporal SAR data were employed to compute
a polarimetric log-ratio used to highlight changes in terms of
magnitude and direction. This information was thereafter ana-
lysed in order to separate non-changed and changed samples.
An extension of the curvelet-based change-detection approach
to polarimetric SAR data for monitoring flooded vegetation,
was proposed by Brisco et al. (2013). First, the Freeman-
Durden decomposition was used to classify the SAR backscat-
ter into double bounce, surface scattering and volume scatter-
ing. Then, a change-detection algorithm was applied to all three
channels separately based on the hypothesis that the presence
of water due to flooding is reflected by an equal increase in all
three channels, whereas the change of a special scattering event
only appears in the dedicated scattering mechanism intensity.
Long et al. (2014) applied a three-step procedure: calculation
of difference image, thresholding and segmentation in order to
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predict flooded areas in Namibia from ENVISAT/ASAR and
Radarsat-2 data.

Interferometric SAR (InSAR) has also been explored for flood
detection [D’Addabbo et al., 2016,Refice et al., 2014]. Refice et
al. (2014) showed that the use of InSAR coherence information
may help in recognizing flooded areas exhibiting little change
in the backscatter intensity. Typically, such areas are associated
with the presence of vegetation. D’Addabbo, et al (2016) also
demonstrate the usefulness of InSAR coherence information to
complement SAR intensity data, in particular for analysis of
areas showing an increased value of backscattering signal dur-
ing the flood.

A major drawback with many of the techniques based on
change detection or multi- temporal SAR or InSAR data is that
it is challenging precisely to determine the nature of the change
in SAR data, and to decide whether it is due to the disaster im-
pact or originates from other events.

The use of ancillary data for improving the flood detection
performance has been investigated in several research studies
[D’Addabbo et al., 2016,Twele et al., 2016]. Bayesian networks
have also been considered for integrating information from
SAR and InSAR time series, and ancillary data [D’Addabbo
et al., 2016]. Their approach showed that a Bayesian networks
data fusion approach allowed to both mitigate false alarms, and
to correctly identify flooded areas in events characterized by
complex land- cover conditions and temporal evolution. Twele
et al. (2016) investigated if and how the processing chain of
the X-band-based TerraSAR-X flood service [Martinis et al.,
2015] can be adapted to C-band Sentinel-1 data. In order to im-
prove the robustness to challenging environmental conditions
(e.g. prevalence of water lookalikes, such as wet snow or radar
shadow in mountainous areas), the flood processor was im-
proved through the integration of an exclusion mask derived
from the Height above nearest drainage (HAND) index [Rennó
et al., 2008, Nobre et al., 2011].

In this paper, a fully automated operational system for detec-
tion and delineation of flood objects is presented. The system
runs on a daily basis and uses a national flood alert service to
determine which regions of Norway to process for flood detec-
tion. All Sentinel-1 SAR data covering Norway is downloaded
and preprocessed every day. The data covering regions with a
flood warning is processed with machine-learning methods to
detect and map the outline of flooded areas. Whereas data cov-
ering regions without flood warning, is stored in a database for
use as reference images. The aim has been faster and better
handling of flood events, as well as better utilisation of avail-
able resources.

However, as with many automatic detection systems, a great
challenge is to obtain high detection rate and at the same time
keep the false detection rate low. For this project, the presence
of wet snow and agricultural areas provided potentially many
false detections. To handle such situations we filter the flood
detection using several features, including the size of the poten-
tial flood object, water mask, and HAND.

2. FLOOD DETECTION SYSTEM

This section gives a brief overview of the system where the al-
gorithms are implemented.

Figure 1. Overview of the flood-detection processing chain.

The flood-detection processing chain (Figure 1) is fully auto-
matic and is daily downloading and processing Sentinel-1 SAR
data covering the Norwegian mainland. The input SAR data
to the algorithm are Level-1 Interferometric Wide Swath (IW)
Ground Range Detected (GRD) products with VV-polarization,
which has been detected, multi-looked and projected to ground
range using an Earth ellipsoid model. The pixel spacing of the
IW GRD products is 10 × 10 m. The pre-processing of the
SAR data is standard, and may be summarized as follows:

• Radiometric calibration to normalized radar cross-section
σ0 (”sigma-naught) using attached metadata.

• 3 × 3 multi-looking to reduce speckle noise

• Geocoding to selected map projection (UTM33/WGS84,
20 × 20m pixel spacing) using the Range- Doppler geo-
coding algorithm. The geocoded SAR images are sampled
to the same grid as the DEM. Other geocoding algorithms
may also be applied.

Then, for each flood-alert region and satellite pass (repeat
cycle), the geocoded images are stitched together into a mosaic
product using the knowledge about the geographical position of
each image pixel.

National flood alerts are fetched from the flood alert application
programming interface (API) served by the Norwegian Water
Resources and Energy Directorate. Based on the status of the
flood alert for each region, the acquired SAR image mosaics
are either processed for reference or for detection. If there is
a flood alert for a given region, the corresponding SAR mosaic
is scanned for flood events, otherwise the reference database
is updated with the SAR mosaic. The flood detection is based
on the change-detection principle, i.e. the system compares the
SAR image with potential flood events with the latest reference
image. Potential flood events are filtered with masks for water
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areas and flood hazards, and other features like size of potential
flood events. The outputs of the system is a Shapefile contain-
ing the geographical extent of each flood object, a false colour
image modulated by a DEM hill-shade image and a raster im-
age displaying the coverage of the SAR product.

3. TRAINING DATA

3.1 Dataset

From previous flood events, corresponding Sentinel-1 mosaic
images were generated. Then, from SAR images, elevation
models, aerial photos, and existing knowledge about floods and
water streams, flooded areas were manually delineated in the
SAR images by the Norwegian Water Resources and Energy
Directorate. In total, 179 flooded areas were delineated from
three major flood events (Table 1). It should be emphasised that
this manual annotation is not perfect. It does not include all
the flooded areas covered by the images from the time of the
event. There are several areas that, based on the satellite im-
ages, looks like they are most likely flooded but where this has
not been confirmed by other sources of information, and, thus,
these areas are not annotated and included in the database. In
addition, the delineation of the included floods, is an estimation
based on expert knowledge.

For each annotated flood object, we created an image crop with
corresponding pixel label mask. Each image crop included,
both the flood object and its nearby surroundings. The set
of image crops constituted the database we used for training
and validating the flood detection algorithm, and consisted of
in total 13,426 pixels of flood and 879,400 pixels from non-
flooded areas (Table 2). Note that by using these crops during
training, we remove most of flooded areas that have been manu-
ally annotated, and thereby alleviate the issue with such flooded
areas influencing the training.

3.2 Reference Image Database

In addition to the images from the event, the flood detection
algorithm described in Section 4.1 requires a reference image
captured at a time without flooding. The Sentinel-1 satellites
are very suitable for such a change detection algorithm as the
satellites have a repeat cycle of 6 days. This means that each
satellite acquire images with the same coverage and geometry
every 6th day.

It is possible to construct a variety of different types of ref-
erence image products. For instance, from a period of time
without flood events, an average image may be computed, or
one could compute an reference image as a linear combination
of the previous N passes without flooding. However, in this
work we used the images acquired during the previous pass not
affected by flood. In practice this is performed by storing im-
ages from each pass occurring at a time when a flood warning
has not been issued. Thus, during a flood event, the system uses
the newest possible images acquired before the flood event as
reference images.

4. FLOOD DETECTION

The flood detection algorithm consists of two steps: a change-
detection step and a flood-processing step.

4.1 Change Detection

Input to the change-detection step is two SAR images (output
from the pre-processing): the event image, Ievent , and the ref-
erence image, Iref . From these two images, the difference
image,

Idiff = Ievent − Iref (1)

is created.

To detect flood objects in the SAR data, two features are
applied: the difference image and the reference image. A
random forest (RF) classifier [Breiman, 2001] (Python/Scikit-
Learn) was trained using the annotated training data (Table 2),
with the following parameters: n estimators equal to 100 and
min sample leaf equal to 63. The other parameters were set
equal to the default parameters. The cut-off parameter was se-
lected to the threshold value when the F2-score (weighted aver-
age of precision and recall) was highest. For the given training
data, the cut-off parameter was selected equal to 0.876. The
cut-off value is the threshold we apply to the RF score values,
i.e. we set the prediction to flood if the score value is greater
than the cut-off.

Figure 2. Decision boundaries of the trained RF classifier. For
feature values within the green area, the RF classifier predicts

flood.

The decision boundaries for the two input features show that
for reference values less than -15 dB and greater than 3 dB the
background class is selected (Figure 2). For reference values
around 15 dB, the RF classifier predicts flood if the difference
value is less than 4 dB, whereas for reference values around
3 dB, the differences values need to be smaller than 10 dB in
order to cause a flood prediction (Figure 2). In test mode, we
apply the random forest classifier to all pixels in the SAR im-
ages, and output pixel values greater than the cut-off value are
labelled as flood. The detected flood objects are then smoothed
using a morphological closing operator with a 3 × 3 structuring
element.

4.2 Flood Processing

Flood detection using the difference image produces many false
detections. In order to reduce the number of false positives, we
apply the following filtering to the output image of the change
detection module:

• Remove flood detections that overlap with the water mask.
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Flood event Regions Reference Date Event Date No of flood
objects

Numedalslågen
Buskerud
Vestfold
Telemark

Aug. 23rd, 2015 Sept. 16th, 2015 16

South coast
Telemark

Aust-agder
Vest-Agder

Oct. 16th, 2017 Oct. 22nd, 2017 90

Inland Oppland
Hedmark May 2nd, 2018 May 14th, 2018 44

Table 1. Flood events used to construct training data.

• Remove detected flood objects smaller than four pixels
(1600 m2) and larger than 2000 pixels (0.8 km2). The
filtering of large objects is effective to remove wet snow
areas, which are often detected by the change-detection
algorithm (note that the largest flood object was 0.3 km2

see Section 5.2).

• Remove flood objects where the corresponding average
terrain slope is larger than 15 degrees.

• Remove flood objects where the corresponding average
HAND value is more than 20 m.

• Remove flood objects where the corresponding average
HAND is more than 5 m and the distance from the nearest
water body is more than 2000 m.

4.2.1 HAND feature image The HAND model calculates
the height of each cell in a DEM raster in relation to its nearest
drainage point [Rennó et al., 2008, Nobre et al., 2011]. The
model uses the drainage network and the local drain directions
to create the distance to the nearest drainage channel, which
is the normalised topology of the HAND model [Rennó et al.,
2008, Nobre et al., 2011]. The HAND model is basically a ter-
rain descriptor and therefore it cannot estimate the flood wave
as in the case of hydrodynamic models. The HAND is used for
hydrological and more general purpose applications, such as
hazard mapping, landform classification, and remote sensing.

The HAND feature image serves as a flood hazard map and
is created from the corresponding digital elevation model us-
ing GRASS GIS and the stream.extraction and stream.distance
modules. The stream.extraction module identifies stream net-
works from digital elevation models, without calculating hydro-
logical parameters, whereas the stream.distance module calcu-
lates the elevation above the nearest stream network. A cent-
ral part of extracting the stream networks is the calculation
of the flow accumulation, which is the flow accumulated into
each pixel. By thresholding the flow accumulation raster, i.e.
keeping cells where the accumulation is larger than a given
threshold, we obtain the stream network. For our DEM we used
a threshold value of 100,000.

4.2.2 Water distance image The distance to the nearest wa-
ter body is calculated by applying the Eucleadian distance trans-

Flood event
No of

flooded
pixels

No of
non-flooded

pixels
Numedalslågen 2 766 148 602
South coast 4 909 276 474
Inland 5 751 454 324
Total 13 426 879 400

Table 2. Training data for the flood detection algorithm.

Training data Test data
Numedalslågen and South Coast Inland
Numedalslågen and Inland South Coast
South Coast and Inland Numedalslågen

Table 3. Training and test data used to evaluate the classifier.

Figure 3. Flood size distribution (m2) of flood objects for the
three flood events.

form to the water mask raster. The result was a raster where
each pixel reports the distance to the nearest water body.

5. VALIDATION

The algorithms are validated by processing SAR data for a
number of flood events (positive events) and SAR data without
floods (negative events) and comparing the results with “ground
truth” derived from manual expert interpretation of SAR data
combined with in situ observations.

5.1 The Validation Datasets

For validating the algorithms we apply the leave-one-out prin-
ciple on the training data described in Section 3, were we train
the classifier on two of the flood events and validate the results
on the third (Table 3).

5.2 Results

The size distribution of the manual annotaded flood objects
shows that the majority of the flood objects are small, typic-
ally less than 20,000 m2 (Figure 3). For all flood events, we
observe that small floods are most common. The largest flood
object had an area of 755 pixels, i.e. 0.3 km2, and occurred in
the “Inland” flood event.
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(a) Gudbrandsdalslågen on May 15th 2018. (b) Bjørsund, Aust-Agder on October 22nd 2017.

(c) Numedalslågen September 16th 2015. (d) Dombås May 14th 2018.

(e) Dombås May 14th 2018. (f) Stange May 14th 2018.

Figure 4. Example results for detections of floods. The flood event image is put in the red channel, whereas the reference image is put
in the green and blue in the false color image. Orange polygons are annotated floods, whereas green polygons are predicted floods.
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Flood event max F2 Cut-off
value

Accuracy
non-flood

Accuracy
flood

Average
accuracy

Numedalslågen 0.57 0.86 0.995 0.67 0.989
South Coast 0.64 0.89 0.995 0.45 0.985
Inland 0.68 0.89 0.940 0.87 0.939

Table 4. Pixel-wise flood detection metrics.

Flood event Number of
flood objects

Number of
true detections

Number of
detections

(descending)

Number of
detections

(ascending)
Numedalslågen 45 41 1153 274
South Coast 90 86 946 865
Inland 44 41 2859 2106
Total 179 168 4958 3245

Table 5. Object-wise flood detection metrics.

The cut-off value used to threshold the RF classifier score-
values was selected as the value that maximized the F2 score,
where the definition of the general Fβ score is:

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

. (2)

For the three different flood events, the F2 metric versus cut-off
value was similar and resulted in a nearly identical cut-off value
(Table 4).

The pixel-wise performance metrics of the RF classifier show
the average accuracy of identifying non-flooded pixels is very
high whereas the average accuracy for identifying flooded
pixels is substantially lower, in particular for the Sørlandet flood
event (Table 4). When we evaluated the results with respect to
the flood objects, we observe that we are able to detect 168
of 179 flood objects (Table 5). However, the flood detection
algorithm detects a significant amount of flood objects not la-
belled. As described in Section 3.1, this is to be expected due
to the imperfections of the manual annotation. A visual inspec-
tion of the results also confirms that a significant part of the
“false” detections are in fact most likely flooded and should be
considered correctly classified.

Several examples of the automatic detections and delineations
of the algorithm are shown in Figure 4, where the annotations
and predictions are represented as orange and green polygons
respectively. The pseudocolor images are constructed by put-
ting the event image in the red channel and the reference image
in the green and blue channels. Positive changes in the backs-
catter thus appear as red areas in the images. Finally, the images
are modulated with the hill-shade image in order to visualise the
topography.

6. DISCUSSION

The performance of the algorithms for detecting and delineat-
ing flooded areas in Norway was in general very good. From
the flood events, we were able to detect 168 of 179 labelled
flood objects. However, even though this number is substan-
tially higher than the number of labelled flood objects, many of
these detections are expected to correspond to actually flooded
areas due to the deficiencies in the manual annotations noted
in Section 3.1. The number of false detections, both pixel-wise
and object-wise, should therefore not be given too much em-
phasis.

During training of the validation RF classifiers (each classi-
fier was trained with data from the two other events, see Sec-

tion 5.1), we observed that the decision boundaries of the RF
classifiers did not change much between the three different val-
idation cases. This stable behaviour of the RF classifier is prom-
ising with regard to the generalisability of the complete flood
algorithm with an RF classifier trained on all the flood objects
in the database.

Figure 4 display several important properties of the detection
algorithm. In Figure 4a and Figure 4b examples where the al-
gorithm performs well are shown. In these figures, all of the
manually labelled flooded areas (orange polygons) are detec-
ted by the system. There are some mismatches between the
predicted flood objects (green polygons) and the manual delin-
eations, especially for the case of “Gudbrandsdalsågen”, how-
ever often these are due to that many pixels in waterbodies are
marked as flood by the manual annotations (these are removed
by the detection algorithm using a water mask). The detected
flood objects in Figure 4c are great examples of detected areas
that most likely are flooded but not included in the manual an-
notations. Both location and the visual signature of the objects
are consistent with actual flooded regions, and thus it is reason-
able to assume that these detections are correct. In Figure 4d,
the opposite seem to be the most reasonable explanation: al-
though the status of the detected object are unknown, it seems
likely that most of them are not flooded areas and that the de-
tections are false. The wet snow area shown in Figure 4e is
an example where the change detection algorithm is easily con-
fused. However, with the use of HAND properties in addition
to object size filtering, the resilience for false detections in such
cases has improved significantly, and thus this area is not de-
tected as flood even though the signature is very strong. Wet
snow is particularly present during spring when the snow is
melting. This often coincide with the time of when floods are
occuring, and thus removing such false detections are import-
ant to the system performance (the system is triggered by flood
warnings). Another factor particularly present during spring, is
areas of agricultural land which is prepared for the season by
the farmers. Examples of such areas is shown in Figure 4f. Re-
moving false detections caused by agricultural areas proved to
be harder; however, including the HAND and removing detec-
tion that were more than 20 m above the nearest drainage point
reduced the number of false detections substantially.

During the development of the flood detection algorithm, an
investigation of the usage of the Sentinel-1s cross-polarization
band and including a mean and standard deviation reference
backscatter image was performed, without any measurable ef-
fects.
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6.1 Future Work

The algorithm should be updated when data from new flood
events are acquired. The flood detection algorithm is only based
on three flood events, and for these events, not all the flood
objects are labelled. Another improvement is to extend the
HAND. Currently, the stream networks are detected by identi-
fying areas that have flow accumulation larger than a given
threshold. A natural extension would be to estimate several
stream networks, using several different thresholds. A method
to fusing different HAND processing results are needed. Other
extensions include the fusion of VHR optical data, either to sim-
ulate and enhanced SAR image product, or to improve the de-
tections.

7. CONCLUSION

In this paper a fully automated flood detection system based on
Sentinel-1 SAR data has been resented. The system runs daily
and downloads and processes SAR data covering Norway every
day. During periods without flood warnings, the system updates
the reference images, whereas for days with active flood warn-
ings, the system is run in detection mode. Based on the evalu-
ation presented, the overall performance of the system is very
good. Nearly all of the labelled flood objects were detected in
the evaluation database, in addition the delineation of the flood
objects seem to be reasonable. There is still a potential for im-
provements regarding the number of false positives, however
the presented efforts to combat these issues have shown to be
very effective and reduced the number to a satisfactory level.
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