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ABSTRACT: 

 

Increasing urbanisation, changes in land use (e.g., more impervious area) and climate change have all led to an increasing frequency 

and severity of flood events and increased socio-economic impact. In order to deploy an urban flood disaster and risk management 

system, it is necessary to know what the consequences of a specific urban flood event are to adapt to a potential event and prepare for 

its impact. Therefore, an accurate socio-economic impact assessment must be conducted. Unfortunately, until now, there has been a 

lack of data regarding the design and construction of flood-prone building structures (e.g., locations and dimensions of doors and 

door thresholds and presence and dimensions of basement ventilation holes) to consider when calculating the flood impact on 

buildings. We propose a pipeline to detect the dimension and location of doors and windows based on mobile LiDAR data and 360° 

images. This paper reports on the current state of research in the domain of object detection and instance segmentation of images to 

detect doors and windows in mobile LiDAR data. The use and improvement of this algorithm can greatly enhance the accuracy of 

socio-economic impact of urban flood events and, therefore, can be of great importance for flood disaster management. 

 

1. INTRODUCTION 

For a variety of applications, like the evaluation of the effect of 

(architectural) design, various construction methods, and 

engineering applications on the damage due to flood events, 

flood damage and risk assessment would benefit from the 

consideration of the distinctiveness of buildings [1]. In such an 

effective case-by-case analysis of damage to a building at micro 

level, building components that resist against flood impacts and 

are unique to each building need to be taken into account [2]. 

Therefore, acquiring the dimensions of doors and windows is, 

among other things, of high importance in flood risk assessment 

studies on micro level. The locations and dimensions of these 

open, weak spots in buildings are decisive factors in whether or 

not the water of a flood can easily penetrate, damage or destroy 

building contents, and affect inhabitants [1,3,4]. Moreover, the 

information of location and dimensions of doors and windows, 

and other openings can be taken into account when evaluating 

local flood protection (e.g., temporary barriers like sand bags). 

 

On the other hand, in some cases, openings in load-bearing 

walls (which for example support the elevated building) are 

necessary to relieve the pressure of standing or slow-moving 

water against the structure (called hydrostatic loads) [5]. As a 

result of these openings, the flood water reaches equal levels on 

all sides of the construction and thus lessen the potential for 

damage caused by a difference in hydrostatic loads on opposite 

sides of the structure. 

 

Although it is already possible to extract the dimensions of 

doors, windows and basement holes from Energy Performance 

Certificates (EPC) [6], extracting the exact location of these 

objects or weak spots from these documents is not possible. On 

the other hand, it is possible to extract the orientation of the 

normal vector of these doors and windows from EPC 

documents, thus making it possible to align these doors and 

windows on walls of the building with the same normal vector 

orientation. Moreover, information on door threshold 

dimensions, for example, cannot be extracted from EPC 

documents. Therefore, an algorithm that can detect the exact 

location of doors and windows adds enormous value to flood 

risk management and flood disaster risk reduction in the future. 

 

1.1 Indoor Social Impact 

Regarding the activity and place of the victims at the time of a 

flood event, research shows that a significant percentage of 

fatalities occur indoors [7–9]. Diakakis, M. (2016) conducted 

research indicating that from mortality numbers due to flood 

events in Greece, 14.8% of all victims passed away indoors [7]. 

Research conducted by Jonckman et al. (2009) showed that 

even a higher portion of fatal incidents occurred indoors as a 

result of Hurricane Katherina. In this case, the majority of 

victims (53%) passed away in individual residences [8]. 

Important to mention is that fieldwork showed that many of 

these residential buildings were unelevated or elevated less than 

three feet, single-story homes [8]. Although a portion of these 

victims died when their houses collapsed due to the powerful 

force of the flood, many others drowned in their home due to a 

high horizontal and rising flood velocity. 

 

Flood water can penetrate through the weak spots of buildings 

(e.g., doors and windows), affecting inhabitants. Therefore, it is 

crucial to determine the locations and dimensions of these weak 

spots. It then becomes possible to estimate and assess the flood 

risk of inhabitants and to calculate the indoor flood 

characteristics (e.g., indoor horizontal flood velocity, vertical 

flood velocity, water depth and duration) with specific flood 

models.  

 

In addition to determining the dimensions and location of 

doors, windows and other weak spots against the force of 

floods, considering the human impact is also essential for 

estimating the direct economic impact due to flood events. The 

dimensions and locations of doors and windows determine the 

indoor flood characteristics and thus the direct indoor economic 

impact when a flood permeates these areas. Moreover, the 

location of doors and windows and the height of door 

thresholds can exclude houses to be affected by a flood event 
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and enabling emergency services to work in a more effective 

manner. 

 

For example, a recent pluvial flood simulation conducted by 

engineering company Arcadis for a vulnerability study of the 

city of Ghent showed that 72-88% of buildings are, in reality, 

not affected by this specific pluvial flood event (with a return 

period of 20 years) when a door threshold for every door of 10 

cm or 15 cm respectively is assumed (see Table 1).  

    

 T20 T100 T20 (2050) 

Total 

number of 

affected 

houses 

 

9 764 [%] 16 383 [%] 17 973 [%] 

< 0.15 m 8 634 88.4 13 717 83.7 15 101 84.0 

< 0.10 m 7 628 78.1 11 725 71.6 12 934 71.9 

 

Table 1. Percentage not-affected by a pluvial flood event (for a 

return period of T20, T100 and T20 for the in situ situation of 

2050) buildings due to door threshold consideration 

 

1.2 LiDAR Data and the Point Cloud Extension 

LiDAR (Light Detection And Ranging) is an optical remote-

sensing technique that uses laser light to produce highly dense 

and accurate (x, y, z) measurements. Besides containing only x, 

y and z values, LiDAR sensors can capture dozens of other 

variables, such as intensity and return number, red, green and 

blue colour values and return times. Handling LiDAR data is a 

complex challenge due to the millions of rapidly produced 

points with large numbers of variables measured on each point 

by LiDAR sensors. This data must be stored efficiently while 

allowing quick and convenient access to the stored point cloud 

data afterwards. 

 

Many Lidar Information Systems (LIS), which have a spatial 

relational database architecture as a core, have been developed 

over the past years in response to storing difficulties (e.g., Point 

Cloud extension in PostgreSQL [10], Oracle [11] …). For this 

research, the Point Cloud extension, together with the 

PostgreSQL database, is used. The Point Cloud extension, 

created by Blottiere P., stores point clouds into so-called 

patches of several hundred points each (see Figure 1) [10]. 

Instead of having a table with billions of points, the table is 

reduced to tens of millions of rows, which is more tractable. 

 

 
Figure 1. Point cloud of mobile LiDAR is stored in patches of 

600 points, Ostend (Belgium) 

 

PostgreSQL Pointcloud deals with all this variability by using a 

so-called schema document to describe the contents of any 

particular LiDAR point. Each point can contain several 

variables: X, Y, Z, intensity and return number, red, green, and 

blue values, return times, etc. 

 

The schema document format used by PostgreSQL Pointcloud 

is the same one as used by the Point cloud Data Abstraction 

Library (PDAL) library [12]. The PDAL library is a C++ BSD 

library for translating and manipulating point cloud data quickly 

and fluently. 

 

2. METHODOLOGY 

2.1 Data Preparation 

Although some research is conducted on running object 

detection and semantic segmentation on panorama images, in 

most scientific studies, spherical images are first converted into 

a less distorted format. 360° spherical panorama images are 

converted to cube boxes via the so-called cube mapping 

process. Cube mapping is a method of environment mapping 

that uses the six faces of a cube as the map shape, with every 

face of the cube consisting of undistorted, perspective images 

(up, down, left, right, forward and backward), whereas the 

equirectangular format is a single stitched image of 360° 

horizontally and 180° vertically. Because the cubic format 

suffers from less distortion than the equirectangular format, it 

becomes possible to detect objects more accurate. 

 

 
 

Figure 2. Cube mapping of spherical panorama images allows 

for more accurate detection of objects 

For the case of Ostend, on average, 70,000 spherical images 

were first converted into cube boxes (see Figure 2). 

 

In order to convert the equirectangular projection to cube box 

projection, the spherical coordinates are used. First, the pixel 

coordinates of the spherical image are normalised: 

 

 (1) 

 

 (2) 

 

depending on the position of the pixel 
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where (i, j) = pixel coordinates 

 h = height 

 w = width 

 

Hereafter, the spherical pixel coordinates can be calculated with 

the following formulas: 

 

θ = x π (3) 

 

φ = y π / 2 (4) 

 

These spherical coordinates (θ, φ) are turned into a unit vector 

(for the sphere with r = 1), by projecting these pixel coordinates 

onto a surrounding cube: 

 

x= r sin θ cos φ (5) 

 

y= r sin θ sin φ  (6) 

 

z= r cos θ  (7) 

 

where r = radius 

 θ  [0, π] 

 φ  [0, 2π] 

 

Based on these unit vectors, the cube boxes are created. 

Hereafter, for every cube box, four of the six faces are extracted 

as individual undistorted, perspective images (Figure 3). 

 

 
 

Figure 3. Example of an image extracted from the cube box 

after converting the 360° image 

 

 

2.2 Detection of Doors and Windows 

Over the past several years, a considerable amount of research 

has focused on the theme of object detection. Applications 

include face recognition [13], gesture recognition [14], 

semantic human activity recognition [15], vehicle and 

pedestrian detection for self-driving cars [16,17] and several 

other advanced, far-reaching applications. 

 

In this time, door and window detection on images has also 

been studied extensively. Notably, approaches in scientific 

studies differ in the variability of the environment (e.g., indoor 

or outdoor) and the images and type of sensors they consider. 

Additionally, numerous studies try to find doors and windows 

based on the fact that these objects move, in contrast with static 

walls [18]. Although this methodology is highly effective, there 

are many more applications where doors need to be detected 

from its static, closed appearance. 

 

The past two decades have seen a number of researchers who 

have sought to detect doors and windows using both visual 

information, whereby for many examples an additional remote 

sensing source of information is taken into account (e.g., sonar 

data, acoustic data, LiDAR data). 

 

Because object detection alone is not enough (with a rectangle 

as output around the detected doors and windows, see Figure 4) 

to determine the location and the dimensions of doors and 

windows, segmentation is needed. Numerous studies have 

considered the problem of detecting the dimensions and 

locations of doors and windows by segmenting the pixels in 

images of building facades into different semantic classes. 

 

After the door or window is detected (the location of the object 

on the image is found), it is possible to predict the best-fitted 

classification for every pixel, so that each pixel is labelled with 

the class of its enclosing object or region, so-called semantic 

segmentation (see Figure 4). 

 

 
 

Figure 4. Difference between classification and localisation, 

object detection, semantic segmentation and instance 

segmentation [19] 

 

In order to calculate the dimensions and assess the location of 

doors and windows, pixel-wise masks for each object are 

needed, dividing each object with the use of instance 

segmentation. 

Object detection or segmentation can be done by supervised 

machine learning approaches or unsupervised machine learning 

approaches. Supervised machine learning approaches use 

algorithms together with pre-defined extracted features to find 

instances of specific objects on new images [20,21]. These 

features are, for example, photometric and spatial statistical 

features, shape features (e.g., ratio of height to width) or 

contextual features. Unfortunately, supervised machine 

learning-based approaches are still prone to human error due to 

the manually labelled features on the pictures used during the 

training process of the model. 

 

On the other hand, unsupervised machine learning approaches 

do not need predefined features to detect the object (e.g., a door 

or a window) or run a semantic segmentation. Instead, an 

artificial Neural Network (NN) automatically creates a model 

and defines the features or the definition of a door and window. 
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By labelling thousands and thousands of images, it becomes 

possible to train a neural network in detecting objects or 

creating semantic segmentation [22,23]. These NN approaches 

learn to perform tasks by considering examples without 

accounting for predefined features and generally without being 

programmed with any task-specific rules. 

 

There are two different approaches when it comes to facade 

segmentation: top-down methods [24–26] and bottom-up 

methods [27–30]. The former method, top-down, uses shape 

grammar to parse a facade into a set of production rules and 

element attributes [25]. This method starts with the philosophy 

that building facades are highly structured due to architectural 

design choices and construction constraints [24–26]. For 

example, a door will often only appear on street-level, and 

windows are not placed randomly but typically at the same 

height as a vertical ordering. Therefore, this method searches 

for the best possible derivation of every object, using a specific 

shape grammar. Unfortunately, until now, grammar-based 

methods have achieved poor accuracy of pixel-wise 

classification [25,31]. Moreover, this method is time inefficient 

during training and inference [32]. 

 

On the other hand, bottom-up methods classify pixels, taking 

context (e.g., neighbouring pixels) into account [28,29]. This 

method employs a pipeline architecture in which each part of 

the pipeline tries to correct wrongly classified pixels or optimise 

the segments created by previous iterations. Currently, this 

method is more efficient and of a higher quality compared to the 

top-down method. 

 

In recent years, much progress has been made on object 

detection, mainly by the development and use of convolutional 

neural networks (CNNs). We can consider Faster R-CNN 

(region-based convolutional neural networks) [33], R-FCN 

(region-based fully convolutional network) [34] and SSD 

(single-shot detector) [35]. Overall, the best instance 

segmentation algorithm depends on desirable accuracy versus 

speed and its necessary memory (see Fout! Verwijzingsbron 

niet gevonden.) [36]. Important to note is that a false positive 

object detection could indicate, in this case, a higher socio-

economic damage which does not match the reality. 

 

 
Figure 5. Accuracy versus speed for an instance segmentation 

algorithm [36] 

 

As aforementioned, multiple algorithms can be used to train and 

run an instance segmentation on perspective images (converted 

from spherical images). For example, He, K. et al. (2017) 

developed the Mask-RCNN, which detects objects in an image 

while simultaneously generating a high-quality segmentation 

mask for each instance (see Figure 6) [37].  

 
  

Figure 6. Examples of outputs from the Mask-RCNN algorithm 

[37] 

 

Starting from an instance segmentation on perspective images 

(converted from spherical images) allows for detection of doors 

and windows in mobile LiDAR data. 

 

2.3 Extraction of Door Dimensions out of Point Clouds 

Images do not always visualise the whole object of interest 

(e.g., door or window) because the line of sight is often 

obstructed by other objects or part of the building itself. This is 

undoubtedly the case when the point of view of the image is 

located at a slight angle from the object (see Figure 7). 

Consequently, automatically extracting the exact dimensions of 

doors or windows out of the object segmentation is impossible. 

Therefore, the correct dimensions need to be extracted from the 

point cloud based on the instance segmentation. 

 

Since the instance segmentation algorithm has yet to give 

desirable results, labelled training data is used to further 

develop the processing algorithm to extract dimension and 

location of doors and windows from a point cloud. 

 

 
 

Figure 7. Training set data is used to further develop the point 

cloud processing algorithm (door labelled by red polygon) 
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Detecting doors, windows and door thresholds and assessing 

their locations and dimensions can be done by running a 

semantic segmentation on point clouds [38–40]. Unfortunately, 

for the case of Flanders, the point cloud does not have extra 

metadata apart from the information about the location (e.g., no 

intensity or scan direction flag or edge of flight line and no 

classification). Therefore, a semantic segmentation on the point 

cloud is challenging or even impossible to perform accurately. 

Another method is required to detect the locations and 

dimensions of doors and windows. 

 

 
 

Figure 8. Point cloud of Ostend, captured from a mobile 

platform 

 

Research conducted in 2005 showed that it is also possible to 

create a distance-value-added panoramic image [41], where 

every pixel holds the distance value measured from the location 

where the images are taken. Similarly, it is possible to create 

‘dimension-added-value’ panorama images, making it possible 

to extract the location and dimensions after completing the 

object detection or semantic segmentation. 

 

This method provides the benefit of quickly extracting only 

relevant point cloud data, whereby point cloud analysis has 

been reduced to a minimum. Moreover, with the use of multiple 

‘dimension-added-value’ panorama images, it becomes possible 

to run semantic segmentation of multiple points of views. As a 

result, it is feasible to detect doors and windows even if an 

obstacle (e.g., a car or tree) blocks the line of sight from one 

specific point of view. 

 

After detecting the object (e.g., door, window) with a semantic 

segmentation algorithm on the spherical images, the metadata of 

the pixels that are classified as a door or window is extracted 

and stored in a database. 

 

Although mobile point clouds can give highly accurate 

measurements of dimensions, this geometry acquisition method, 

unfortunately, inevitably includes measurement noise at varying 

degrees. This noise is caused by signal backscattering of the 

measured targets and the materials of the targets’ surface[42]. 

 

The Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) is used to deal with the noise of the mobile 

mapping acquisition. DBSCAN groups points that are closely 

packed together (points with many nearby neighbours). In order 

to run the DBSCAN clustering, two parameters are required: 

maximum distance between points ε and the minimum number 

of points required to form a dense region [43]. First, all so-

called core points with a predefined minimum number of points 

inside the ε neighbourhood of every point are selected. Next, a 

connected component is created of all core points that are in the 

neighbour graph. Hereafter, every non-core point is assigned to 

a formed cluster if the non-core point lies within the ε distance 

of a cluster. All remaining points are labelled as noise and can 

be ignored (see Figure 9). Consequently, all points within the 

DBSCAN cluster are mutually density-connected, and if one 

point is density-reachable from any point of the cluster, it is part 

of the cluster as well. 

 

 
 

Figure 9. Besides containing the actual measurement of walls, 

doors and windows, mobile LiDAR data (purple points) 

contains noise (red circles), which makes it challenging to 

extract the points that represent doors (red points). 

 

After reducing the noise in the point cloud samples, the 

detection of a door and window plane is completed.  The planes 

are not created using normal vectors (see Discussion) but rather 

by calculating the line of best fit in the x,y plane (see Figure 

10). Although noise is ignored with the use of DBSCAN 

clustering, the line of best fit is created by considering the 

possible existence of outliers. Because of this, it becomes 

possible to define doors quickly. 

 

 
 

Figure 10. Pixels are automatically selected based on the 

training data set, whereafter the relevant point cloud dimensions 

can be used 
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Unfortunately, due to a wide range of door shapes (e.g., 

ornamentation and sculpting on front doors), the proposed 

algorithm does not give satisfactory results after a visual 

evaluation. Therefore, more extensive research is needed to 

improve this proposed algorithm pipeline so that the locations 

and dimensions of doors and windows can later be used in the 

flood risk assessment methodology in Flanders. 

 

3. DISCUSSION 

3.1 Accuracy of the Point Cloud 

The point cloud of the mobile mapping has an accuracy 

between 1 to 2 cm, which means that the extracted location and 

dimensions of doors, windows and door thresholds will be 

accurate enough to use in flood risk assessment studies [44]. 

Nevertheless, this accuracy needs to be included and mentioned 

together with the output of this calculation so that it can be 

accounted for in the decision-making process of flood risk 

management. 

 

3.2 Difference in Region-Dependent Appearance 

While the appearance of doors and windows seem only to 

slightly change from region to region, sometimes these 

differences can be significant, resulting in decreased accuracy of 

instance segmentation algorithms. Thus, when an object 

detection algorithm is trained, special attention must be given to 

training the model based on images of doors and windows in 

the specific region of the application (e.g., Flanders). 

 

3.3 Type of Materials 

In contrast with algorithms that only use segmentation of 

LiDAR data to detect doors and windows, this algorithm can 

provide more information than the dimensions and location of 

these objects. Because this prototype contains an object 

detection script, it is possible to incorporate a material detection 

algorithm, which can detect whether a door or window is made 

of wood or metal. Although this material detection will remain a 

rudimentary estimate, this information can be used to estimate 

the stability of these weak spots for flood events in buildings. 

Furthermore, the object detection algorithm can also detect the 

presence of barrier gutters around doors and windows. 

Moreover, cat doors and mailboxes in front doors can be 

detected and considered in flood risk assessments. 

 

3.4 Conversion Time Spherical to Cube Box Image 

The conversion from the spherical image to cube box images 

take, on average, seven minutes since the algorithm does not 

support multithreading on the graphics processing unit (GPU). 

Instead, everything is purely calculated on central processing 

units (CPU), which is computation intensive. Fortunately, it was 

possible to convert the images in parallel using the High-

Performance Computing  (HPC) infrastructure of Flanders [45]. 

As a result, it was possible to convert 70,000 images in a few 

hours, instead of 34 days. Nevertheless, changing this 

conversion script into a script that supports multithreading on a 

GPU will be necessary for future use. 

 

3.5 Applicability and Scale of Prototype 

Although this prototype is tailored for the Flanders region, it 

can be used in other regions as well, after some additional script 

is embedded. The spherical panorama images and mobile 

LiDAR data can be extracted from the Google StreetView 

panorama images [46,47]. Cavello M. et al. (2015) suggested a 

method to reconstruct a point cloud based on multiple different 

Google StreetView panoramic images along a street [47]. By 

using the reconstructed point cloud and panorama images from 

Google StreetView, this prototype can also be used to detect the 

dimensions and locations of doors, windows and door 

thresholds. 

 

3.6 Median Clustering of Normal Vectors 

In the development of the prototype, the median cluster method 

of normal vectors was not used. With the clustering of normal 

vectors of a point cloud, it becomes possible to get 

segmentations of planes. Unfortunately, due to an overload of 

noise at windows and windows in doors and the lack of LiDAR 

data of the glass, it is challenging to extract planes of doors and 

windows by clustering normal vectors. Moreover, not all front 

doors have a perfectly flat surface. For example, ornamentation 

and sculpting on front doors make the detection of the door 

plane extremely challenging. Nevertheless, a combination of the 

normal vector clustering method and the line of best fit (in the 

x,y plane) method, could offer an improved, complementary 

methodology.  

 

3.7 Upgrading the Prototype 

As cited above, the mentioned script requires further research 

and development to detect the dimensions and locations of 

doors, windows and door thresholds automatically. At the 

moment, the script is not ready for valorisation without further 

improvement in object detection and the final door and window 

segmentation. 

 

4. CONCLUSIONS 

Consideration of the location and dimensions of doors and 

windows plays a crucial role in increasing the accuracy of flood 

risk assessment in Flanders. Until now, there has been a lack of 

data concerning the design and construction of flood-prone 

building structures. However, the combination of LiDAR data 

and panoramic images available in Flanders could be used to 

provide valuable insight into the matter. With the use of 

instance segmentation on 360° images and processing and 

analysis of point cloud data, it becomes possible to obtain 

information on weak spots. This paper reports on the current 

state of research in the areas of object detection and instance 

segmentation on images to detect doors and windows in mobile 

LiDAR data. 
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