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ABSTRACT: 

 

Reported by National Disaster Response Agency of Indonesia (BPBD) as many as 94 dies, 149 injured, and more than 88 thousands 

homeless caused by floods in 2018. Besides bringing casualties to people and environment, the floods also affect the damages to 

transportation infrastructures in which vital to disaster emergency response operation e.g. evacuation process. Due to the complex 

impact of current disaster, the demands of providing a short-term response increases accordingly. Therefore, this research proposes a 

prototype of flood evacuation route utilizing network analyst method. The network analyst method particularly focus on finding 

alternative route based on time and distance. This research uses a flood simulation model derived from Landsat 8 imagery and terrain 

data. Subsequently, the simulation model divides the flood severity based on the depth which consist of < 0.3 m (slight), 0.3-0.5 m 

(moderate), and > 0.5 m (serious) in order to generate an impact analysis regarding the estimation of damages and casualties. In order 

to resemble the real situation of flood, barriers (e.g. flood area) are applied into the finding evacuation route procedure. Thereby, the 

estimated evacuation route can be executed considering the safest and fastest way. Moreover, some comparisons between before and 

after flood are conducted in order to know the effectiveness of evacuation routes. By such comparison proves that network analyst 

enables to support disaster management operation with respect to handling the evacuation procedure. 

 

 

1. INTRODUCTION 

During the past decade, disasters are the major reason for many 

deaths, injuries, and homeless of populations along with 

extensive property damages remain. Supposedly, the casualties 

regarding to the mortality rate and sociality impact is caused by 

weather-related disasters, such as flood, tsunami, and landslide, 

particularly in the high period of moonsoons. As reported by 

National Disaster Response Agency of Indonesia (BPBD), 

floods caused as many as 94 dies, 149 injured, and more than 88 

thousands homeless in 2018 (Zhacky, 2019). The flood impact 

not only happened to people and environment, but also 

transportation infrastructures damages in which vital to disaster 

emergency response operation (Huder, 2012) e.g. evacuation 

and resource deployment process. 

 

A growing understanding about disaster impact inisiates the 

disaster-related organization demands particular actions in 

managing the disaster impact in order to enhance the resilience, 

preparedness, and response upon the disaster. In the most case, 

disaster management was associated with mapping to identify 

the impact particularly for doing response phase (ESRI, 2006; 

Esri, 2000; Mansourian et al., 2006). The mapping for disaster 

involves several technologies such as Global Positioning 

System (GPS), photogrammetry, remote sensing, and 

Geographic Information System (GIS). The use of which has 

been proven that spatial location is very crucial for identifying 

and indicating characteristic of the disaster and the scope of 

emergency response has grown tremendously over the past 

years (ESRI,2016; Tang et al, 2009). 

 

Identifying water body is the important subject to extract flood 

simulation model. With a time series landsat data, water surface 

information can be extracted by several water surface 

interpretation technique. The extraction methods comprises 

object-based analysis (Dao, et al., 2015), water index algorithms 

detection (Mcfeeters, 2013), and classification methods 

(Westen, 2012) implementation. Such methods are essesial for 

determining flood occurence by distinguishing open water 

(permanent and temporary) and vegetation water from non-

water object. 

 

As the most priority of disaster preparedness is saving lives and 

livelihoods (United Nations, 2008), disaster management should 

consider the response phase instead of identifying the 

characteristic of disaster only. Therefore, the procedure 

regarding response is implemented. Such of which is dealing 

with evacuation plan towards the casulaties by providing 

transportation networks (e.g. railroads, roads, traffic control 

points) (Gunes et al., 2001). The parameters of determining 

evacuation route composed of time, distance, and safety. Such 

parameters are familiar enabling in network analyst of ArcGIS, 

considering its capabilities in dealing with shortest and fastest 

route access (Nicoara & Haidu, 2014),(Pasha, 2006). Network 

analyst is one of ArcGIS extensions for routing purpose based 

on network spatial analysis e.g. closest facility, point-to-point 

routing, drive-time analysis (Pasha, 2006). 

 

Due to the complex impact of current disaster, this research 

purpose evacuation route based on flood simulation model 

derived from Landsat 8 and terrain data produced from DTM 

filter of Cosmo SkyMed Stripmap HIMAGE image. By using 

flood model simulation, the evacuation routes is executed based 

on the travel time and distance considering damage analysis due 

to the flood. 

 

2. STUDY AREA AND DATASET 

2.1 Study Area 

The admistrative boundary of Surabaya is divided to 31 districts 

of 4 territorial boundaries composed of west, east, north, and 
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south. Surabaya is located in 7o15’55” S and 112o44’33” E. 

Based on Meteorology, Climate, Geophysic Agency (BMKG) 

monitoring, Indonesia has 2 seasons composed of rainy and dry. 

Due to the topographical location, Indonesia has various 

topography condition which triggers the diversity of climate 

change. Based on the analysis of last 30 years (1981-2010), 

climatologically Indonesia has 407 climate patterns, of which 

342 patterns are seasonal zone (meaning that clearly 

differentiate between rainy and dry season) and non-zone 

(meaning that of which has 2 times maximum rainfall in a year 

or where throughout the year the rainfall is always high or low 

(BMKG, 2019). Surabaya is categorized into the seasonal zone 

whose high period of rainy season occured from October to 

March. 

 

  
 

Figure 1. Flood Potential Map of East Java, Indonesia 

 

Based on the geographical location of Surabaya whose coastal 

area around, flood periodically occurs in particular area. Figure 

1 shows flood potential map of East Java for January 2019. The 

severity level is divided into high, medium, and slight,  

indicated by red, yellow, and green respectively. 

Sukomanunggal, Tandes, and Benowo are identified as the most 

vulnerable districts of flood potential in Surabaya. Therefore, 

this research chose West of Surabaya as the study area. The 

study area composed of Tandes, Sukomanunggal, Sambikerep, 

Lakarsantri, Benowo, Pakal, and Asemrowo district. 

 

2.2 Landsat 8 

Three different aqcuisition time of Landsat 8 image were 

collected to detect water surface for predicting inundation area 

of flood occured on March 13, 2014. These images were chosen 

considering water surface changes before and after flood event. 

Before conducting water surface detection approaches, the 

images were georeferenced to UTM zone 49S, corrected 

radiometrically and atmospherically using FLAASH (Fast Line 

of Asmospheric Analysis radiative transfer) to produce surface 

reflectance or Bottom of Atmospher (BoA). The catalogue of 

landsat dataset used in this research described in table 1. 

 

Table 1. The catalogue of Landsat image used 

 

Acquisition Date Cloud cover % 

November 1, 2013 6.13 

March 25, 2014 6.38 

 

2.3 Terrain data 

Terrain data was extracted from Digital Surface Model (DSM). 

The DSM is produced from Cosmo-SkyMed Stripmap 

HIMAGE captured on May, 14 2015 with the spatial resolution 

is 2.5 m. Terrain data is obtained by Digital Terrain Model 

(DTM) filter process to omit objects from bare earth. Height 

range is between 2m and 113 m from the vertical datum which 

is mean sea level (MSL) of Tanjung Priok station. 

 

  
 

Figure 2. DTM data of Surabaya (b) Existing river overlaid with 

DTM 

 

Based on this high precision of DTM data, object height can be 

recognized more precisely. Such that, lower area can be 

detected to classify the estimation of flood severity. 

 

3. METHODOLOGY 

3.1 Flood Simulation Model 

Flood simulation model is generated from Landsat 8 imagery, 

terrain data, and rainfall monitoring data as the additional 

information. Distinguishing water surface into “temporary” and 

“permanent” water is the important process in the simulation 

model. Thus the “temporary” water is then assumed as flood 

over the study area. Indicating the “temporary” water si carried 

out by temporal analysis of Landsat data. Furthermore, the 

changes of water and building indices of temporal landsat date 

are used to indicate the existance of “temporary water”. 

 

3.1.1 Water Index: Modified Normalized Water Index 

(MNDWI) is the modification of Normalized Water Index. This 

algorithm is designed to optimalize the reflectance of green 

band to identify water and minimize the reflectance of Middle 

Infrared (MIR) to identify built-up land, vegetation, and soil 

reflect (Xu, 2019). The formula of MNDWI is expressed here; 

 

   (2) 

 

Where green and MIR reflectance are band 3 and 6 of Landsat 8 

respectively. By computing MNDWI, the extraction of water 

surface value enhances positive value close to 1 while build-up, 

vegetation, soil value decrease more negative or tend to be zero. 

MNDWI is the important parameter in detecting water surface 

changes among different Landsat data acquisition. Such that, 

“temporary” water surface can be identified. 

 

3.1.2 Building Index: Normalized Difference  Build-up Index 

(NDBI) is a build-up index designed to optimalize reflectance 

of MIR band to detect built-up land thus yields value close to 1 

and minimize reflectance of NIR band to detect vegetation and 

wet surroundings (Rasul et al, 2018). The formula of NDBI is 

expressed here; 

 

    (4) 
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Where MIR and NIR are band 6 and 5 of Landsat 8 

respectively. By computing NDBI, built-up object can be 

distinguished from wet surroundings. 

 

Classifying water index and building index are conducted in this 

research to detect potential inundation area of flood on March 

2014. By assuming water surface area changes identification 

from NDWI extraction and built-up area from NDBI extraction, 

inundation area can be distinguished based on the significant 

contrast between wet and dry area extracted from both index. 

Besides  recognizing the pattern of existing permanent water 

before flood event, the existing of built-up, soil and vegetation  

 

3.2 Network Analyst 

Network is carried out based on interconnected elements in a 

map such as edge, line, connecting junctions (point), that 

represent possible routes from one to another (ESRI, 2016). By 

modeling the travel path with a network, it can be easier to 

analyze the movement of vehicle behaviors such as performing 

the shortest path and fastest path upon evacuation route. The 

requirement of network analyst is network datasets or 

transportation networks which represent the street, pedestrian, 

or railroad, equipped with the directions. 

 

This reserch produce network dataset based on Open street Map 

which contains street ID, street name, street class, surface 

condition, and oneway information. Network dataset is built up 

over the West of Surabaya street based on ground sampling 

data. 

 

Ground sampling was conducted before building the network 

dataset in order to complement Open street map (OSM) 

metadata with direction, time travel, and measured distance. 

Parameters of determining the ground sampling object was 

street class and surface condition defined from OSM. The street 

class was divided into primary, secondary, tertiary, residential, 

living street, and trunk. While surface condition was divided 

into high damage, medium damage, and normal. Furthermore, 

travel time of each segment street was obtained by 

implementing this equations (1); 

 

    (1) 

 

where S = distance 

 v = average speed of vehicle 

 t = travel time 

 

 
 

Figure 3. GPS tracking of Telaga Utama Street 

 

S and t are measured using Global Positioning System (GPS) 

Garmin tracking. Figure 3 shows the example of GPS tracking 

record from Telaga Utama street (primary street) that yielded S 

= 400 m, v = 28,8 km/hour. 

 

4. RESULT AND DISCUSSION 

4.1 Water Surface Detection 

Water surface detection is conducted by classifying MNDWI 

value into 4 classes composed of blue water, green water, 

shallow water, non water object. Based on supervised 

classification upon existing vector data from Geospatial 

Information Agency of Indonesia (BIG), permanent water 

surface is successfully generated with standard deviation 0.348 

and overall accuracy 80%. 

 

 

 

 

 

 

 

 

    

 

 

 

 

Figure 4. (a) Supervised classification of MNDWI before flood 

(b) MNDWI overlaid with existing river and lake from 

referenced vector 

 

Figure 4 shows MNDWI computation of before flood event. 

The study area is depicted in black boundary. Assumming the 

permanent water is categorized as blue and green water e.g. sea, 

lake, pond, and reservoir, the temporary water can be further 

identified. Eventhough river is categorized as shallow water in 

this classification, the existance is relatively constant to be 

categorized into permanent. Such that, for indicating temporary 

water surface river can be ignored. The MNDWI classification 

value over the study area is described as follows; 

 

Table 2. Supervised classification of MNDWI (Before Flood) 

 

Class MNDWI 
Coverage 

% 

Area 

(km2) 
Blue water 0.659 – 1 3,64 4.177 

Green water 0.335 – 0.659 6,13 7.026 

Shallow, vegetation 

water 

0.007 – 0.335 9,07 10.393 

Non-water -1 – 0.007 81,15 92.972 

 

Ignoring the existance of clouds cover and null data in the water 

surface changes analysis, inundation area is generated based on 

water surface changes between before and after flood event. A 

number of increasing MNDWI value indicated on after flood 

event (see Table 3). It has larger contrast between water surface 

and non-water object than before flood event as shown in figure 

5a. In addition, the dividing class of MNDWI becomes more 

generalized particularly water surface. The change of MNDWI 

class is affected by turbidity water of flood reflect more green 

band so that the value increase more positive (Mcfeeters, 2013; 

Xu, 2019). Thereby, potential inundation area can be identified 

precisely considering the existing permanent water indicated by 

MNDWI extraction before flood event. Figure 5b depicts water 

surface changes detection with brown color as the result of 

MNDWI fusion between before and after flood event. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-455-2019 | © Authors 2019. CC BY 4.0 License.

457



 

  
(a)         (b) 

  

Figure 5. (a) NDWI Extraction after Flood Event (b) Water 

Surface Area Changes 

 

 Table 3. Supervised Classification of MNDWI (After Flood) 

 

Class MNDWI 
Coverage 

% 

Area 

(km2) 

Blue water 0.659 – 1 34,38 39,579 

Non water 0.335 – 0.659 46,32 53,333 

Cloud Shaddow 0.007 – 0.335 9,32 10,731 

Cloud cover -1 – 0.007 9,97 11,483 

      

4.2 Building detection 

Building detection is used to validate water surface changes as 

NDBI capable of distinguishing built-up and wet surroundings. 

So as to precisely validate the distribution of existing water 

surface, reclassifying the result of NDBI extraction before flood 

event is conducted to discriminate built-up, soil, and vegetation 

background from water surface. Supervised classification is 

carried out by dividing the class into turbid water, water, 

soil,vegetation and minor built-up, as well as major built-up 

with overall accuracy 80%. Minor built-up described in this 

research as a number of building with soil and vegetation as the 

surroundings. Therefore minor building, soil, and vegetation are 

generelized at the same class in order to enhance water surface 

detection. The dividing class of NDBI before flood described in 

table 4. 

 

Table 4. Supervised Classification of NDBI (Before Flood) 

 

Class NDBI Coverage 

% 

Area 

(km2) 

Turbid Water -1 – -0.5 4,56 4,007 

Clean Water -0.5 - -0.01 16,4 14,403 

Soil, Vegetation, 

Minor built- up 

-0.01 – 0.49 

 

90,56 79,493 

Major Built-up 0.49 – 1  2,38 2,096 

 

Based on the classification result depicted in figure 6, turbid 

water easier to be discriminated against other classes. Since 

turbid water reflects more NIR that cause the NDBI value has 

more negative. NDBI classification after flood event yields 

dividing class depicts cloud shaddow and cloud. Otherwise soi, 

vegetation and minor built-up area decrease significantly and 

turbid water increase accordingly. The capability of NDBI in 

discrimating built-up from wet surroundings has limitation in 

dry area (Rasul et al., 2018). Therefore minor built-up and soil 

difficult to identified in this study area where the study area is 

dominantly dry. Otherwise NDBI extraction after flood event 

detects more water (see Figure 7). It might caused by the soil 

condition after flood event triggers MIR reflects wet soil more 

than before flood event. Since NDBI poorly identify in semi 

arid area (Qian et al., 2007) 

  

  
 

Figure 6. Classification of NDBI computation value 

 

Table 5. Supervised Classification of NDBI (After Flood) 

 

Class NDBI 
Coverage 

% 

Area 

(km2) 

Turbid Water -1 – -0.5 61,40 70,555 

Soil, Vegetation, 

Built- up 

-0.5 - -0.01 32,18 36,975 

Clouds shaddow -0.01 – 0.49 0,961 1,105 

Cloud cover 0.49 – 1  5,46 6,272 

 

 
 

Figure 7. Classification of NDBI (After Flood) 

 

4.3 Flood Simulation Model 

Flood simulation model is generated by water surface detection 

using MNDWI and NDBI extraction. Before identifying 

inundation area, image fusion between MNDWI and NDBI is 

carried out to discriminate water surface from bare soil, 

vegetation  and built-up object. Figure 8 shows the comparison 

between NDWI and NDBI. Both index succesfully discriminate 

water surface againts the surroundings. Eventhough NDBI 

extraction of water more rough, wet object can be discriminated 

againts dry object mainly building and soil. 

 

   
(a)           (b) 

Figure 8 Comparison between (a) MNDWI and (b) NDBI in 

classifying water surface 
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    (a)          (b) 

 

Figure 9. (a) Potential Inundation Area of Flood (b) flood 

severity 

 

Flood severity is generated from image fusion betwen flood 

potential area with terrain data. This research assume the 

severity emphasize on the lowest area as the serious (>0.5m) 

and sequentially. Serious categorized by 18-25 m, moderate 

(0,5-0,3m) categorized by 25-30m, and slight categorized by 

30-35m, respectively in the reference terrain data. The severity 

class is depicted in figure 10b. Serious is depicted by brown, 

moderate and slight is described by orange color. Furthermore, 

impact analysis towards damage road and damage bridge is 

carried out. Based on the analysis, 698 road segments are 

submerged flood and 3 of 19 impacted bridge are within serious 

area (figure 11). 

 

  
 

Figure 11. Facilily damage analysis 

 

4.4 Generating Evacuation Route 

An emergency decision may require to be made in the 

emergency situation when disaster strike to recover unplanned 

situation. For example changing street directions, damaged 

facilities, and moving vehicle stops (Bartolozzi et al., 2015). 

This research solve the tranportation issue in flood evacuation. 

By applying flood potential generated from previous analysis as 

barriers, this research simulate route analsys of Sememi Health 

Center surrounding area. Figure 13 depicts potential evacuation 

route around 30 minutes in accordance with time applied as the 

parameter of analysis before flood event. The destiation of 

evacuation is Sememi health center and the origin is the 

surrounding pedestrian. Sememi health center is chosen since 

the location is more accessible if flood occured compared with 

other health center. The location has minimum flood effect 

based on previous flood potential analysis. 

  

          (a) 
 

 

 

 

 

 

  

b 

 

Figure 12. (a) The recommended route to Sememi health center 

from several origin (b) route to sememi health center from 

pedestrian 

 

 
 

Figure 13. The recommended route after flood 

 

Figure 13 depicts the recommended route decrease at the flood 

area. Eventhough the rest route still generates the same covered 

area. Such that, this recommended route can be the alternative 

route for evacuation procedure of Sememi health center 

surroundings. The route all contains residential street <2 m 

width and no described name. The average speed of this 

alternative route is 20 km/hr. 

 

5. CONCLUSION 

Flood potential map is successfully generated from image 

fusion between before and after flood utilizing MNDWI and 

NDBI classification. The result shows MNDWI has more  

accurate value than NDBI in discriminating water surface. 

Flood severity is classified based on image fusion between 

terrain and flood potential, the severity is dominated by slight 

and moderate. From flood potential analysis, evacuation route 

analysis is carried out at Sememi Health Center surrounding 

area based on 30 minutes coverage area. The recommended 

route reveals the effectiveness as the generating route after 

flood event remain the same. This paper is ongoing reseacrh in 

which the flood potential will be developed considering water 

level in order to enhance the classification of flood depth. 
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