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ABSTRACT: 

 

Urban planning starts with the selection of suitable sites. The main factors and components for site selection are the geological-

geotechnical parameters that directly affect the natural hazards, such as landslide and flood, construction costs and the location and 

distribution of existing infrastructure. The presence and accuracy of up-to-date maps in planning are very important. With the increase 

of high resolution Earth observation satellites, the required data can be obtained with high temporal frequency and spatial availability. 

From these data, the base parameters for planning can be extracted with semi- or fully-automatic methods. Among the Earth observation 

satellites, the Sentinel-2 mission of European Space Agency (ESA) provides high resolution optical images and the data are freely 

available also at different processing levels such as orthorectified images. 

 

In this study, the possibility of the landslide susceptibility map production which should be one of the base maps in urban planning by 

using Sentinel-2 satellite images was investigated in Mamak District of Ankara City, Turkey. The land cover and land use data were 

produced from Sentinel-2 images by using a supervised classification method in SNAP Tool provided by ESA. The lithological 

definitions were received from the General Directorate of Mineral Research and Explorations. The topographical parameters such as 

slope, aspect, topographic wetness index, etc. were extracted from a high resolution digital terrain model (DTM) of the area. Manually 

extracted landslide inventory data were employed in the logistic regression method and the produced landslide susceptibility map of 

the study area is presented here. 

 

 

1. INTRODUCTION 

Natural disasters are events that cause loss of lives and 

properties. Due to the rapid growth of population and 

inadequate land use planning, harmful effects of natural 

disasters are increasing in rural and urban areas of developing 

countries. In addition, the role of existing infrastructure and 

human impact are in general neglected in urban planning 

frameworks (Mulero et al., 2018). A combined approach for 

land use planning that take infrastructure, human effect, and 

natural hazard potential is needed and recent developments in 

geoformation tools and technologies for data collection and 

analysis can provide the required means for this purpose. 

 

Landslide is one of the most common natural hazard which 

occurs all over the world. Disasters caused by landslides 

damage buildings, infrastructure and other public facilities in 

the settlement areas. Between 1950 and 2018, a total of 23.041 

landslides were recorded in Turkey (AFAD, 2019). The 

determination of landslide prone areas plays an important role 

in urban planning and disaster mitigation actions organized by 

local governments. Thematic maps on landslide susceptibility, 

hazard and disaster risks can demonstrate their spatial 

characteristics and the potential environmental and societal 

effects.  

 

                                                                 
*  Corresponding author 
 

For the production of landslide susceptibility maps, 

geomorphological (e.g. topographical, hydrological, etc.), 

geological (e.g. lithology) and land use and land cover (LULC) 

features of the area of interest should be taken into account. 

The geomorphological characteristics should be derived from 

a high resolution digital terrain model (DTM) to obtain the 

required level of detail in an urban area. Although the 

geological and geomorphological characteristics may not 

deviate much in a short time span, the LULC changes very 

quickly especially in a developing urban settlement. Due to the 

importance of LULC data in landslide susceptibility mapping 

(Chen et al., 2019), up-to-date data that represent the most 

recent LULC pattern are needed to obtain high accuracy. In 

addition, existing landslide inventories are required for this 

purpose. However, preparation of landslide inventory in urban 

settlements and heavy construction sites is very difficult since 

the topography is either covered or largely modified that 

obstruct the visibility of landslides considerably. 

 

The main aim of this study is to investigate the usability of 

Sentinel-2 images for producing timely accurate landslide 

susceptibility map for a part of Mamak District in Ankara, 

Turkey together with high resolution DTM and lithology data 

obtained from national geodatabases. Satellite optical images 

are obtained regularly over a large geographical extent and 

European Space Agency (ESA) provide geometrically 

corrected (i.e. orthorectified, L2B) Sentinel-2 images 
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regularly. The Sentinel-2 satellite is a multi-band (13 bands in 

total) Earth observation satellite launched by the ESA (2019), 

with ground sampling distances (GSD) of 10 m, 20 m and 60 

m, and a high transmission frequency (Sentinel-2 coverage 

map, 2019). The spatial resolution of the multispectral channel 

images (10 m) is sufficient for the purposes of this study. In 

addition, the SNAP Tool provided by ESA is easy to use and 

free, which satisfies the needs of urban planners who may not 

be remote sensing experts. The frequency of repetition through 

the same orbit is 5 days and the frequency of repeating the 

same site is higher due to overlapping trajectories. The images 

of Sentinel-2 are widely used in natural hazard analysis 

(Poursanidis and Chrysoulakis, 2017).  

 

Although a massive amount of landslide susceptibility 

mapping studies and methods exist in the literature (e.g. 

Nefeslioglu et al., 2008; Pham et al., 2018; Gorum et al., 2008; 

Reichenbach et al., 2018, etc.), most studies were applied in 

rural areas and accurate production of such maps in urban 

settlement is difficult due to intense construction work and 

dense buildings. Logistic regression method is preferred here 

since it is simple and can take non-numerical parameters such 

as different LULC types into account. The output 

susceptibility map can be used as a base for urban planning 

practices by local governments.  

 

2. STUDY AREA 

Due to increased population, urban sprawl is a major issue for 

the urban development in Ankara, Turkey. Mamak District, 

located in the east of the city, is one of the development centre 

for this sprawl. There are also known landslide risks in the area 

where 637.935 people live. Mamak is also a main gate of 

Ankara connecting the city to the Eastern Turkey with major 

transportation infrastructure (e.g. highways, railways). In 

addition, Bayindir dam is located here. A part of Mamak 

District (Figure 1) with a geographic position extends from 

39°53'41.689" N to 39°56'27.108" N latitude and 

32°56'51.372" E to 33°0'57.578" E longitude was considered 

as the study area. The coverage of the study area is 30 km2 and 

the altitude ranges from 924 m to 1284 m. Existing 

construction and urban expansion potential were taken into 

consideration for the selection.  

 

3. METHODOLODY AND DATA 

Landslide susceptibility map of the study area was produced 

by employing LULC data obtained from the classified 

Sentinel-2 images, topographical characteristics derived from 

high-resolution DTM, and the lithological parameters in a 

logistic regression process. By analyzing the output map, the 

landslide occurrence potential of the study area was interpreted 

by engineering geologists and urban planners to propose 

appropriate planning principles. The main workflow of the 

study is given in Figure 2. 

 

3.1. Input Datasets 

A high resolution grid DTM of the region with 5 m intervals 

and vector data (breaklines) representing the 

geomorphological characteristics were produced by General 

Directorate of Mapping from aerial photogrammetric flight 

missions, and provided for the study area. Topographical 

parameters such as altitude, slope, general curvature, plan and 

profile curvatures, topographic wetness index (TWI), stream 

power index (SPI), distance to channel networks and ridgelines 

are derived from the grid DTM and the breaklines.  

 

Figure 1. The location of the study area and an overview of 

the Sentinel-2 RGB image used in the study 

 

 

Figure 2. Overall workflow of the study 

 

The Sentinel-2 satellite images were acquired on March 23rd, 

2019, and used for generating LULC maps with a supervised 

classification technique (i.e. Random Forest). The lithological 

characteristics of the region were obtained from the Yer 

Bilimleri Portali provided by the General Directorate of 

Mineral Research and Exploration (Akbas et al., 2002). All 

data were rasterized with the same grid interval (5 m) to apply 

the logistic regression method. Eight landslides were manually 

delineated by the expert to calculate the logistic regression 

coefficients (Figure 3). 
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Figure 3. The altitude ranges and the landslide inventory in 

the study area. 

 

3.2 Topographic Attributes 

Areas are defined with some environmental scalars for 

understanding topography. These scalars include primary and 

secondary topographic attributes, which are calculated with 

taking derivatives of DTM. Primary topographic attributes 

such as slope, aspect, curvature etc. are calculated from 

elevation data while secondary topographic behavior such as 

SPI and TWI are calculated from second derivatives of 

elevation data (Moore et al., 1991). In this study, these 

parameters were calculated using SAGA GIS (2019) and 

ArcGIS (ESRI, 2019) software. Statistical attributes of the 

parameters are provided in Table 1.  
 

 

 Min Max Mean Std. Dev. 

Altitude (m) 924.1 1284.7 1032.2 62.8 

Slope (degree) 0.004 73.127 13.075 8.719 

Aspect 

(degree) 

0 360 192.23 101.46 

General 

Curvature 

-1.25957 1.09325 -9.73E-05 0.05887 

Plan 

Curvature 

-0.09291 0.14917 4.56E-04 9.69E-03 

Profile 

Curvature 

-0.16431 0.16666 -5.05E-04 0.01107 

SPI 0 3315271.5 688.02 14974.51 

TWI 1.2776 22.1526 5.8651 2.1451 

Distance to 

Channel (m) 

0.4 561.9 84.2 73.8 

Distance to 

Ridgeline (m) 

0.0 229.9 33.0 26.5 

Table 1. Statistics of topographic attributes 

 

Altitude is the measure of elevation in the area (Wilson, 

Gallant, 2000). The elevation ranges and the landslide 

inventory of the study area are shown in Figure 3. The slope 

gradient is expressed as a measure of the amount of change in 

height values (Wilson and Gallant, 2000) (Figure 4).  It is used 

to understand the relationship between slope values and 

landslide formation.  

 

Figure 4. The slope gradient map of the study area 

The slope direction is the direction of the steepest descent line 

and is usually measured in degrees clockwise starting from the 

north. The ratio of landslides is determined on which slopes 

(north, south, etc.) are higher than the others (Wilson and 

Gallant, 2000). The aspect values represent 90° in North, 180° 

in West, 270° in South, and 360° in East. The aspect map of 

the study area is shown in Figure 5. 

 

Figure 5. Aspect map of the study area 

The rate of overall change of the first derivatives (slope 

gradient and slope direction) of digital elevation models 

(DEMs) represent the general curvature (Figure 6). The plan 

and profile curvatures are analyzed separately and 

corresponding maps are given in Figures 7 and 8. Plan 

curvature is the rate of change in the direction of slope along 
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the contour lines and the profile curvature is the rate of change 

of the slope gradient in a slope (Wilson and Gallant, 2000). 

Curvatures can be negative that demonstrate that the surface is 

concave, or positive that demonstrate that the surface is convex 

or zero that the surface is flat (Budimir et al., 2014). 

 

Figure 6. General curvature map of the study area. 

 

 

Figure 7. Plan curvature map of the study area. 

 

 

Figure 8. Profile curvature map of the study area 

 

The SPI indicates a measure of the abrasive power of flowing 

water (Zakerinejad and Maerker, 2015) (Figure 9). SPI is used 

for landslide susceptibility maps because of being denotive of 

the potential erosion energy of the sediments (Kakembo et al., 

2009). The TWI is used in order to express the locations and 

dimensions of the water-saturated areas in the topographical 

sense (Moore et al., 1991) (Figure 10). 

 

Vertical distances to channel networks are important for 

landslide susceptibility maps. With this topographic attribute, 

landslides which were occurred close to a channels are found. 

These channels are eliminated in the predicted landslide risks. 

Channel networks are derived from the DTM by calculating 

vertical distances to channel network (Samia et al., 2017). 

There is negative correlation between distance to ridgelines 

and landslide occurrence (Budimir et al., 2014). Ridgelines are 

derived by using flow direction and stream network created 

from DTM. The distance maps to channels and ridgelines are 

given in Figures 11 and 12. 

 

Figure 9. SPI map of the study area 

 

 

Figure 10. TWI map of the study area 

 

 

Figure 11.  Distances to channels. 
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Figure 12. Distances to ridgelines. 

 

3.3 Land Use and Land Cover 

Understanding the purpose of land-uses on territory is essential 

on decision-making processes. LULC map with seven classes 

was produced from Sentinel-2 satellite images by supervised 

classification using the SNAP Tool of ESA.  Random forest is 

chosen as supervised classification method. Training samples 

of main land-use categories are collected from the RGB bands 

of Sentinel-2 images. For improving classification accuracy, 

Gray-Level Co-Occurrence Matrix (GLCM) of the images 

were calculated for all directions. Classification was made by 

adding GLCM angular second moment (GLCM-ASM) 

parameter to the supervised classification (Figure 13). 

 

 

Figure 13. Land use and land cover map of the study area. 

 

3.4 Lithological Characteristics 

The lithology is one of the most important variable in the 

natural hazard analysis like land use and altitude (Pourghasemi 

and Kerle, 2016). Lithological descriptions are used for 

understanding the geological characteristics of the region. 

Lithological and structural differences generally lead to a 

change in robustness and permeability of rocks and soils 

(Ayalew and Yamagishi, 2005). Lithology map is provided by 

the General Directorate of Mineral Research and Exploration. 

There are five lithological features belonging to five ages in 

the area (Figure 14, Table 2). 

 

 

Figure 14. Lithology map of the study area 

Age Description 

Pliocene Terrigenous clastics 

Quaternary Undifferentiated quaternary 

Permo - Triassic Clastics and carbonates 

Upper Paleozoic Tirassic Schist, phyllite, marble, 

metabazite etc. 

Lower – Middle Miocene Non graded volcanites 

Table 2. Lithological ages and descriptions in the study area 

 

3.5 Logistic Regression Method 

In this study, multivariate logistic regression is used for 

preparing landslide susceptibility map. Logistic regression is a 

statistical model used for landslide susceptibility maps to 

predict potential risk areas. Logistic regression method is 

preferred because it gives fast and accurate results for landslide 

risk detection (Budimir et al., 2014; Reichenbach et al., 2018). 

In this method, there are dependent and independent variables. 

Dependent variable is binary map which include occurrence or 

non-occurrence of landslides (Samia et al., 2017). Independent 

variables are topographic attributes, land use and lithology 

maps. Logistic regression model works with analyzing 

relationship between these dependent and independent 

variables and estimate potential risk areas. Logistic regression 

method is computed using the following equations: 

 

Yi = β0 + β1Xi                                                             (1) 

  

P𝑖 = (𝑌 = 1/𝑋𝑖 ) = 1/ 1+e −(Yi)                                         (2) 
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where Yi is the dependent variable, xi is the i-th covariate, β0 

is a constant and βi is the i-th regression coefficient and P is 

the probability of the occurrence of landslides (Budimir et al., 

2014). The existing landslide inventory and randomly selected 

non-landslide areas were used as training data in calculating 

the logistic regression parameters. The selected ratio between 

the landslide and non-slide pixels is 1:2.  

 

4. RESULTS AND DISCUSSION 

4.1 Landslide Susceptibility Map  

Landslide susceptibility map is derived by using the eleven 

parameters. Figure 15 presents the landslide susceptibility map 

produced in this study. According to the map, the landslide risk 

in the study area are noticeable. The landslide susceptibility 

probability in the area range between 1-99%. The 

susceptibility is higher in the west parts of the study. These 

areas are also subject for urban transformation projects.  

 

Figure 15. Landslide susceptibility map of the study area 

The accuracy of the landslide susceptibility map is important 

for better understanding of the risks in the region. The 

accuracy depends in general on the quality of data, 

methodology, number of parameters used in the process and 

the type map generation (Ayalew and Yamagishi, 2005). The 

accuracy of the landslide susceptibility map can be interpreted 

from the ROC (Receiver Operating Characteristics) curves 

which is a measure for the capability of current model in 

classification (Perlich et al., 2003).  Areas with and without 

landslide risks were 96% classified correctly (Figure 16). All 

parameters mentioned in the previous parts have effective role 

on the prediction of risks.  

 

4.2 Urban Transformation Plan  

The Mamak Urban Transformation Project (Figure 17) was 

implemented in a part of the study area that has a size of 

7.389.400 m2. The project was completed in 11 project stages 

under the cooperation of TOKI, which is a state organization 

for construction, Ankara Metropolitan Municipality and 

Mamak Municipality. The main goal of the project was to 

transform and modernize the slums, which is an unplanned 

settlement area with insufficient facilities and infrastructure 

(Mamak Belediyesi, 2018). While the initial number of slums 

before the project started was 13.662, the number of slums 

destroyed at the time of this writing is 8.389. 30.000 dwellings 

are planned to be constructed in the project. As mentioned, 

Mamak has natural hazard potential and risks. The landside 

susceptibility map could be used to examine the vulnerability 

of the urban development and transformation plans within the 

study area (Figure 17). 

 

Figure 16. ROC curves of landslide susceptibility map 

                   

Figure 17. A part of urban transformation project within the 

study area. 

 

4.3 Discussion 

The DTM textured with both the Sentinel-2 image and the 

landslide susceptibility map of the study area were visualized 

in 3D with the QT Modeler (2019) software for analyzing the 

results (Figure 18 and Figure 19). Figures 20 and 21 show the 

existing and the planned urban transformation project areas. 

The existing project area (red circle in Figure 20) has very low 

landslide risk potential. It could be a sign for proper urban 

transformation project area although no attention is yet paid to 

other natural hazard potential. There are slum areas (blue 

circles in Figures 20 and 21) which are the potential urban 

transformation sites. Land use decisions of these areas should 

be prepared elaborately. It is more appropriate to evaluate 

these areas at high risk as urban green areas by establishing 

agreements with the property owners. There are also newly 

constructed buildings (green circle in Figure 21) in the west of 

Mamak region. The construction quality and the landslide 

resistance of these structures can be used as a criterion to 

measure the accuracy of the previous partial urban 

transformation in this area.  
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Figure 18. The DTM of the study area textured with the 

Sentinel-2 image. 

 

Figure 19. The DTM of the study area textured with the 

landslide susceptibility map (output of logistic regression). 

 

Figure 20. Important focal area for city planning in North-

West Mamak. 

 

Figure 21. Important focal area for city planning in South 

Mamak. 

5. CONCLUSIONS 

In this study, the usability of Sentinel-2 images in landslide 

susceptibility mapping in urban development areas together 

with high-resolution DTM and the lithology data was 

investigated. The random forest classification method 

implemented in SNAP Tool is found successful for producing 

LULC classes from Sentinel-2 RGB images. Integrating the 

ASM parameter of GLCM helped to distinguish the industrial 

areas from the roads in the classification. The accuracy of the 

logistic regression method was found sufficient for the 

purposes of the study. Although the number of the training 

samples in manually delineated landslide areas was low, using 

the 1/2 ratio for landslide/non-landslide samples worked 

efficiently. The produced landslide susceptibility map can be 

used as base for the urban development and transformation 

plans and further analysis is to be made for this purpose. 
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