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ABSTRACT: 

Today’s climatic proneness to extreme conditions together with human activity have been triggering a series of wildfire-related events 

that put at risk ecosystems, as well as animal and vegetal patrimony, while threatening dwellers nearby rural or urban areas. When 

intervention teams - firefighters, civil protection, police - acknowledge these events, usually they have already escalated to proportions 

hardly controllable mainly due wind gusts, fuel-like solo conditions, among other conditions that propitiate fire spreading. 

Currently, there is a wide range of camera-capable sensing systems that can be complemented with useful location data - for example, 

unmanned aerial systems (UAS) integrated cameras and IMU/GPS sensors, stationary surveillance systems - and processing 

components capable of fostering wildfire events detection and monitoring, thus providing accurate and faithful data for decision 

support. Precisely in what concerns to detection and monitoring, Deep Learning (DL) has been successfully applied to perform tasks 

involving classification and/or segmentation of objects of interest in several fields, such as Agriculture, Forestry and other similar 

areas. Usually, for an effective DL application, more specifically, based on imagery, datasets must rely on heavy and burdensome 

logistics to gather a representative problem formulation. What if putting together a dataset could be supported in customizable virtual 

environments, representing faithful situations to train machines, as it already occurs for human training in what regards some particular 

tasks (rescue operations, surgeries, industry assembling, etc.)?    

This work intends to propose not only a system to produce faithful virtual environments to complement and/or even supplant the need 

for dataset gathering logistics while eventually dealing with hypothetical proposals considering climate change events, but also to 

create tools for synthesizing wildfire environments for DL application. It will therefore enable to extend existing fire datasets with new 

data generated by human interaction and supervision, viable for training a computational entity. To that end, a study is presented to 

assess at which extent data virtually generated data can contribute to an effective DL system aiming to identify and segment fire, 

bearing in mind future developments of active monitoring systems to timely detect fire events and hopefully provide decision support 

systems to operational teams. 

1. INTRODUCTION

Fire ignitions due to human activity and climatic changes are 

becoming increasingly challenging to manage and control. 

According to official sources from United States (“U.S. 

Wildfires,” 2019)  and Europe (Jesús San-Miguel-Ayanz et al., 

2018), these events still have unpredictable impacts on several 

countries in what regards to both ecological and civil society 

perspectives.   

The need for fire monitoring has been widely addressed among 

several works that encompass satellite-based approaches 

(Morisette et al., 2005), sensor networks (Bhattacharjee et al., 

2012), mobile biological sensors (Sahin, 2007), unmanned aerial 

vehicles (UAV) and remote sensing (Yuan et al., 2015) and 

whose computation is handled by methods that might range from 

typical digital image processing (Celik et al., 2007) to  neural 

networks (Muhammad et al., 2018). 

Typical approaches for processing technological-based fire 

monitoring, namely the ones relying on deep learning (DL) 

require the use of existing datasets for models’ training and 

validation. However, factors such as climate changes have the 

potential of bringing new disaster scenarios, desirable of being 

characterized or prevented even before they occur. Fire 
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specialists/scientists might be valuable to point out directions for 

fire ignition and spreading in unseen scenarios and conditions, 

wherein virtual environments play a crucial role. More 

specifically, synthesizable hypothesis for fire occurrence 

prediction have the potential to constitute a relevant source for 

improving fire detection and preventing higher damages in 

effective threatening situations triggered by fire. Following this 

line, this paper argues that, like humans, machines are capable of 

learning out of virtual environments within a context that 

promotes a progressive objects’ classification and segmentation 

accuracy enhancement, while simultaneously reducing the need 

for burdensome logistics to gather datasets worthy to be 

considered representative of a given problem. The motivation for 

such study lies on the latest graphic cards technology that has 

been allowing to reach computer-based synthetized 

environments of outstanding realism and convincingness, as well 

as on neural networks advances, namely regarding to 

backpropagation and, lately, region proposal capabilities. 

To investigate machines’ virtual-to-real transfer learning 

assumption, two main tasks were carried out: (a) a fire ignition 

and spreading simulator tool was developed to allow users to 

manipulate particles systems impersonating smoke and fire 

within a completely 3D virtual environment endowed with 
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interactivity; (2) a Feature Pyramid Network (FPN) was applied 

to handle the computer-based learning of virtual images with fire 

collected from synthetized environments - manipulated with the 

previous mentioned simulator tool - and to  make predictions on 

real images part of the Corsican fire dataset (“Corsican Fire 

Database,” 2017; Toulouse et al., 2017). The little amount of 

virtual images homogeneously taken from the very same virtual 

environment - built with a low-detail photogrammetric model set 

up out of flight made over a chestnut area - used to train DL 

models allowed to conclude about the potential that machines 

have in earning knowledge from real-world by learning from 

synthetized environments. 

Regarding organization, the remainder of this paper is divided 

into five other sections. A brief background addressing automatic 

fire detection is presented in the second section. Afterwards, an 

overview of the proposed virtual-to-real transfer learning 

approach is proposed in the third section, followed by Section 4 

that encompasses implementation details regarding the virtual 

fire simulator as well as the FPN used as deep learning-based 

segmentation architecture to assess machine’s virtual-to-real 

learnability. The last two sections (5 and 6) are reserved for 

results, discussion, conclusions and future work. 

2. BACKGROUND IN AUTOMATIC FIRE

MONITORING/DETECTION 

Fire ignitions in general and wildfire in particular have been 

greatly addressed by the community of scientists/practitioners 

interested in studying this type of hazards/disasters and 

reducing/mitigating their destructive effects. 

Whilst international efforts to sense and provide responses to fire 

events have been witnessed for a while Olenick and Carpenter, 

2003 and Alkhatib (2014) suggest that the main systems for the 

purpose of  detecting fire (in this case, within forest context) rely 

on satellites, optical sensors, digital cameras, and wireless sensor 

networks.  

Satellites have the capability of remotely monitoring fires at large 

distances, in a macro-analytical way. For example, Morisette et 

al. (2005) resorts to data produced by Terra’s Moderate 

Resolution Imagine Spectroradiometer (MODIS) along with 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) to study and assess fire pixels analysis 

algorithms. Weaver et al. (2004) studied wildfire detection and 

short-range forecast in geostationary satellite imagery. Studies 

within the context of fire and satellites usage are still prevailing 

(Johnston et al., 2018).  

Within optical sensors/digital cameras, infrared (IR) sensitive 

devices are suitable to detect heat regions as pointed out by 

Töreyin et al. (2007), who also characterized flame flickering 

through hidden Markov models. Least mean square errors active 

learning was a process proposed by Günay et al. (2010), who 

characterized fire by colour, motion, flicker handling and contour 

analysis. Also highlighting colour and motion, Zhang et al. 

(2014) suggested an improved probabilistic approach for fire 

detection in videos, based on candidate fire regions generation 

and fire area change. A block-based approach over low quality 

cameras’ imagery using discrete cosine transforms (DCT) and 

wavelets, and in combination with k-Nearest neighbor (k-NN) 

and support vector machines (SVM) demonstrated usefulness in 

detecting smoke, which is used as an early indicator for fire 

hazard (Gubbi et al., 2009). DCT was also one of the key 

processes to early detect fire through internet protocol (IP) 

cameras imagery in a later work, more specifically by tracking 

smoke (Millan-Garcia et al., 2012). In the work of Muhammad et 

al. (2018), convolutional neural networks (CNN) fine-tuned for 

closed-circuit television cameras were applied towards fire 

detection. An approach to boost smoke detection on wildland 

forests through Region-CNN (R-CNN) and synthesized smoke 

images was recently proposed (Zhang et al., 2018). 

Regarding wireless sensor networks, Bhattacharjee et al. (2012) 

reported a life-saving system to early detect fire in coal mines, 

resorting to temperature and gas sensors. The idea of using 

animals as mobile biological sensors was proposed by Sahin 

(2007), wherein some species were equipped with thermal and 

radiation sensors with Global Positioning System (GPS) features 

towards early detection forest fires. A similar concern with the 

forest protection was encompassed by Fernández-Berni et al., 

2012, but with a vision-enabled wireless sensor network 

supported by a robust algorithm for smoke detection. 

Others addressed fire detection with a radio-acoustic sound 

system and thermal maps (Sahin and Ince, 2009). Within soft 

computing techniques for fire detection, Mahdipour and 

Dadkhah (2014) proposed an extensive review that considers the 

categorization made by Alkhatib (2014) and intelligent 

techniques (artificial neural networks, cellular automata, etc.), as 

well as false alarms reduction. A relatively recent survey made 

by Yuan et al. (2015) highlights the benefits and opportunities of 

using UAV platforms for monitoring, detecting and fighting fire 

in forests, as well as key technologies for the automatic 

performance of such tasks. Also focusing UAVs, Cruz et al. 

(2016) proposed a high precision fire index with low 

computational penalty. 

Regarding CNN architectures, a considerable amount of them 

have been proposed: VGG - named after Visual Geometry Group 

labortatory - (Simonyan and Zisserman, 2014), ResNet (He et al., 

2015), Inception family (Szegedy et al., 2014) (Szegedy et al., 

2015) (Szegedy et al., 2016), Google’s MobileNet (Howard et al., 

2017), Xception (Chollet, 2016) and DenseNet (Huang et al., 

2016). Segmentation networks oriented to object detection 

include – but are not confined to - Fully Convolutional Network 

(FCN) (Long et al., 2014), ParseNet (Liu et al., 2015), U-Net 

(Ronneberger et al., 2015) and Feature Pyramid Network (FPN) 

(Zhao et al., 2016). 

The following section presents a virtual-to-real transfer learning 

approach that aims to endow a machine with the capabilities to 

recognize fire in real imagery, based on previously learned virtual 

environments, specifically set up with particle systems to 

simulate smoke and flames. 

3. VIRTUAL-TO-REAL TRANSFER LEARNING

APPROACH 

Inspired by the way that virtual reality systems have been training 

humans for the most varied tasks (Cha et al., 2012), an approach 

to transfer learning from 3D synthetized environments to train 

machines in identifying fire events in real scenarios is proposed. 

It is composed of 3 main functional blocks: a basic virtual fire 

simulation tool, a processing component working with a CNN-

based FPN, and a sensing layer. 

The virtual fire simulation tool allows to build a faithful virtual 

environment that can integrate convincing manually produced or 

photogrammetrically computed landscape models, upon which 

particle systems simulating smoke and dynamic flames can seed. 

The functionalities planned for this basic version include: 

• Loading of virtual landscapes;

• Placement and manipulation of particle systems to

produce fire-like effects;

• Basic virtual lightning parameterization;

• Virtual photographic registration (print-screens of

regions of interest within the synthetized environment).

FPNs became a popular convolutional-based image segmentation 

approach, developed with the participation of Facebook Artificial 

Intelligence Research (FAIR).It is known for properly dealing 

with different scales, due to it’s pyramidal bottom-up and top-
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down strategies for determining feature maps. As such, a decision 

was taken to integrate FPNs in the processing component of this 

proposal, with applicability in two main steps: 1) training stage, 

to create the convolutional model out of virtual environments 

simulating burning fire situations with particle systems; and 2) 

prediction stage, to estimate fire masks upon imagery depicting 

real-world scenarios. 

Collecting in situ imagery for monitoring and detecting fire 

deflagrations requires the integration of a sensing layer, 

eventually composed of smartphone-based, fixed and/or UAV 

cameras for image acquisition and processing plus additional 

sensors/devices, such as positional systems and communication 

infrastructure.  

Regarding the working pipeline, fire simulator constitutes a tool 

for setting up convincing fire deflagrations and extracting images 

and classification region masks out of it. These outcomes are then 

sent to a processing component that applies a FPN architecture to 

create an estimation model for classifying and segmenting 

regions of interest in incoming images, depicting real scenarios. 

Such images are provided by an abstract sensing layer mainly 

composed by camera-capable devices that collect digital 

snapshots from the real-world to be delivered to the processing 

component, for consistent prediction and monitoring. Ideally, 

this data flow ends up feeding a decision support system, 

benefiting several actors (citizens, forest ranges, farmers, 

security authorities, etc.) with context-aware information, 

according to each one’s activities. Thereby, resulting intervention 

guidelines have the potential to advise citizens on how to avoid 

burning areas, to guide firefighters by providing fire striking 

strategies, highlight paths to safely help farmers to secure 

livestock, and so on. Conceptually, data flows among a 

communication infrastructure preferably configured by a 

wireless-based transmission/reception architecture, due to the 

obvious risk of damage for tangible hardware, such as cables. 

Figure 1 sums up the proposed virtual-to-real transfer learning 

approach in a general architecture scheme. 

 

 

4. MATERIALS AND METHODS 

The implemented tools, as well as the landscape models and FPN 

details will be provided in this section. 

 

4.1 Fire Simulator 

The tool developed to build faithful environments for fire 

simulations upon landscape virtual models (Figure 2) was 

developed in Unity 3D (Unity Technologies, California, United 

States).  

The user interface includes a navigable 3D environment 

composed of a digital landscape, a top bar providing instructions 

and applicational proprieties’ status. There is also a small 

previewer at the bottom-right corner of the applicational window 

that gives a glimpse of the content that is being captured by the 

virtual camera that collects imagery within the virtual 

environment, in two modes: (1) attached to the user as a first-

person shooter (FPS) camera; and (2) attached to a virtual drone, 

simulating a birds eye perspective.  

Regarding interaction and functionalities, a user can select the 

virtual landscape to load from the hard drive, set some areas on 

fire by clicking in the mouse scroller, enable or disable smoke 

particle system, by pressing “F” key, and make the acquisition 

virtual camera switch between FPS and birds eye perspective 

mode by selecting “C” key. Each time “P” key is pressed with 

the referred virtual camera pointed to a region of interest within 

the virtual environment, a couple images in portable network 

graphics (PNG)  format are printed out to files and saved in the 

hard drive: one of them represents the region of interest as-is, 

while the other constitutes the ground-truth mask segmenting the 

fire flames.  

 

 
Figure 1. General architecture of the virtual-to-real transfer 

learning approach: a fire simulator enables to 

hypothesize virtual scenarios with particle systems  

spawining flames/smoke, while a FPN-based 

processing component learns to identify those 

particle-based elements; the imagery/data produced 

by a sensing layer can use that artifical knowledge to 

identify probable fire hazard situations in real-world, 

through the processing component that is ideally 

linked to a decision support system to provide 

intervention guidelines to different stakeholders. 

 

4.2 Virtual landscape model integrated in the fire simulator 

The fire simulation tool supports the integration of virtual 

landscapes selected from user’s hard drive. In this study, a 

particular photogrammetric model, produced based on UAV 

images of a flight mission performed over an area located in 

north-eastern Portugal (41°22'43.8"N, 7°35'00.8"W) was used. 

The area is populated with clusters of pine (Pinus pinaster) and 

chestnut (Castanea sativa Mill.) trees, shrubland communities, 

some grassland and agricultural properties, and few man-made 

infrastructures. Imagery acquisition was done using a DJI 

Phantom 4 (DJI, Shenzhen, China), a cost-effective multi-rotor 

UAV equipped with a Global Navigation Satellite System 

(GNSS) receiver and a 12.4 MP RGB sensor mounted in a 3-axis 

electronic gimbal (Pádua et al., 2018). Pix4Dcapture (Pix4D SA, 

Lausanne, Switzerland) allowed to plan the flight that was carried 

out at 100 m height, covering 3.8 ha, with a frontal imagery 

overlap of 80% and a longitudinal overlap of 70%, resulting in a 

4 cm ground sampling distance. Then, the high-resolution RGB 

imagery was submitted to a photogrammetric processing using 

Pix4Dmapper Pro (Pix4D SA, Lausanne, Switzerland), which 

resorts to Structure from Motion (SfM) algorithms to identify 

common (tie) points in the images, enabling the generation of 

three-dimensional dense point clouds, from which textured 
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meshes are produced and made available to use as virtual models 

in external programs. 

 

 
Figure 2. Fire simulator ambient displaying a virtual landscape 

and a sinthetized fire focus of small dimension. 

 

4.3 Datasets 

Two datasets were used in this study: one virtual for training 

purposes and another constituted by real-world occurrences for 

assessing the virtual-to-real transfer learning effectiveness. 

 

4.3.1 Real-world dataset 

The laboratory “Sciences Pour l’Environnement” UMR CNRS 

6134 SPE of the University of Corsica is the main stage for the 

“Fire” project, which is dedicated to the modeling and 

experimentation of fires in natural environments populated with 

vegetation (“Corsican Fire Database,” 2017; Toulouse et al., 

2017).  

Following the project goals, a wide database composed of fire 

imagery was established, containing thousands of wildfire 

pictures and image sequences acquired in the visible and near-

infrared spectral range, considering various conditions of 

shooting, type of burning vegetation, climatic conditions, 

brightness and distance to fire. Within this dataset, two types of 

images can be found: a RGB picture and a corresponding binary 

mask annotating the active flame in the image (Figure 3).  

 

  

  
Figure 3. Examples of RGB and binary images retrieved from 

Corsican dataset (“Corsican Fire Database,” 2017; 

Toulouse et al., 2017). 

 

4.3.2 Synthesized dataset 

Within the previously addressed fire simulator, imagery datasets 

can be produced by using an FPS camera, under user control. 

Each time a shoot is requested from that FPS camera, two PNG 

files are outputted regarding a virtual area of interest under focus: 

a clean print-screen of the scene and a mask annotating 

synthetized flames (Figure 4). The process for producing a 

ground-truth mask consists in coloring in black the materials of 

all objects other than particle systems-based fire, change their 

shaders to disable diffuse reflections triggered by ambient 

lightning, clear sky-boxes to black, hide synthetized smoke and 

then produce the image and binarize it according to a 

straightforward black/non-black pixels criterion. In the end, 

objects features are completely restored to the state they were 

before ground-truth mask production process, in an operation that 

is imperceptible to users’ interaction. 

 

  

  
Figure 4. Examples of RGB and binary images retrieved from the 

fire simulator tool. 

 

4.4 FPN approach 

For a faster integration of FPN capabilities, an implementation 

made available by Matterport, Inc (Sunnyvale, California, USA) 

was used and properly adapted to the fire problem posed in this 

paper (Mask R-CNN for object detection and instance 

segmentation on Keras and TensorFlow, 2019). This is an 

implementation of mask region-CNN (R-CNN) for Python 3, 

built upon Keras and TensorFlow. Models resulting from this 

approach generate bounding boxes and segmentation masks for 

each object instance in the images. A ResNet architecture 

provides support in the backbone. It allows to visualize every step 

related to the anchor boxes refinement towards final detection 

boxes, generates masks and promotes control over activation 

layers. TensorBoard plotting in one of the supported features, as 

well as the possibility of dealing with both Common Objects in 

Context (COCO) and customized datasets preparation. 

 

The next section presents the results of the preliminary tests to 

assess the potential of FPN to infer real fires out of virtual 

knowledge. 

 

5. PRELINARY RESULTS AND DISCUSSION 

The FPN network was trained with the virtual fire images took 

from the virtual environment. Regarding configurations settings, 

here are some of the used parameters: 

• Image dimension: 1024; 

• Image minimum dimension: 800; 

• Image resize mode: square; 

• Learning momentum: 0.9; 

• Learning rate: 0.001; 

• Weight decay: 0.0001; 

• Loss: bounding box/mask loss; 
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• Mask pool size: 14; 

• Class number: 2 (Fire and background); 

• RPN train anchors per image: 128; 

• Steps per epoch: 10; 

• Top-down pyramid size: 256. 

• Classifier layer size: 1024 

 

Moreover, among several region proposal network (RPN) 

settings specifying anchors’ scales, ratios, strides, also a value for 

detection confidence can be defined, thresholding the objects that 

will be outputted by the FPN in use.  

Learning stage presented a convergence tendency, visible in loss 

values for both training and validation, as evidenced by Table 1. 

Besides global loss, 5 other parameters were retrieved: bounding 

box, class, mask, RPN bounding box and RPN class loss values. 

As usual, training showed a faster convergence inasmuch 

images’ features are “freely” acquired and mapped, according to 

the behavior imposed by ResNet architecture, in this case. On the 

other hand, validation stage had an expected lower convergence 

rate in time, due to the underlying matching process that tests 

learned features against imagery reserved for proofing/checking 

(validation set), which is, in turn, implicated in the calibration of 

the weights and biases of the neural network in use.   

 

Parameter 

(Loss) 

Training Validation 

Epoch 1 Epoch 50 Epoch 1 Epoch 50 

Loss Value 3.4 0.2 2.2 1.9 

Bounding Box 0.9 0.06 0.7 0.3 

Class 0.3 0.02 0.08 0.06 

Mask 1.3 0.1 0.6 0.1 

RPN Bounding Box 0.6 0.01 0.7 1.3 

RPN Class 0.08 0.01 0.3 0.2 

Table 1. Results of the FPN training stage for both training and 

validation, considering loss metrics. 

 

Evaluation metrics were based on known evaluation indicators, 

more specifically, true positive/negative (TP,TN) and false 

positive/negative (FP,FN) pixels counting, as well as Dice 

coefficient and Jaccard Index. The formulas for latter pair of 

metrics are presented in equations (1 and 2), under a set theory 

perspective, wherein DC and JI represent Dice Coefficient and 

Jaccard Index, both operating with two sets specified by X and Y. 

 

 𝐷𝐶 =  
2 |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
      (1) 

 

 𝐽𝐼 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
     (2) 

 

While Figure 5 provides a visual insight of the predictions made 

over real open-air fire images using knowledge acquired from a 

virtual dataset, Table 2 presents the quantitative analysis using 

the previously mentioned set of metrics. As it can be observed, 

the prediction of fire could be achieved successfully in all of the 

images submitted to FPN. Regarding similarity to ground-truth, 

one can easily conclude that accuracy is not high. The following 

aspects might be contributing for this outcome: only 16 images 

depicting virtual fire were used, 10 for training and 6 for 

validation; data augmentation was not considered in this stage; 

only a single virtual environment was used, with prejudice to the 

heterogeneity of examples required for an effective feature 

learning; photogrammetric processing was not set to output a top 

quality landscape virtual model, considering a balance between 

available computational resources and smoothness regarding 

simulator tool usage, at runtime; finally, some parts of the 

training/validation masks were annotating virtual smoke as fire - 

due to virtual simulator’s occlusion aspects requiring revision -, 

with visible impact in FPN performance.  

 

   

#ID 1 #ID 2 #ID 3 

   

#ID 4 #ID 5 #ID 6 

   

#ID 7 #ID 8 #ID 9 

 

 

 

 #ID 10  

Figure 5. Prediction masks over the 10 images used to test the 

virtual-to-real transfer learning approach. 

 

#ID 
Estimation Data 

TP(px) FP(px) TN(px) FN(px) DC(%) JI(%) 

1 104112 253039 691425 0 45% 29% 

2 62117 32524 953935 1289 79% 66% 

3 116828 91075 840673 2184 72% 56% 

4 62769 176532 809275 26058 42% 26% 

5 99495 300687 648394 384 40% 25% 

6 100828 416767 530981 29388 32% 19% 

7 227805 172423 648348 13716 72% 57% 

8 85198 77522 885856 1656 69% 52% 

9 153000 47467 848109 6942 87% 76% 

10 57730 61510 929336 38668 65% 48% 

Table 2. Results of the 10 images used to test the virtual-to-real 

transfer learning approach. TP, FP, TN and FN 

correspond to True positive, False Postive, True 

Negative and False Negative, respectivelly; all of 

them are measured in numbers of pixels. DC stands 

for Dice Coefficient, while JI represents Jaccard 

Index, both presented as percentual quantities.   

 

In spite of the discussed issues, correlations rated over 70% can 

be found in 4 images (according to Dice Coefficient), pointing 

out the potential of the proposed virtual-to-real transfer leaning 

approach. Indeed, images identified with the IDs 5 and 6 had the 

worst correlations in this trial, probably, due to the conditions in 
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which they were acquired. While the former can be characterized 

by the presence of a great extent of smoke causing entropy in 

FPN detectors - due to the aforementioned issue related to 

training with smoke annotated as fire -, the latter is influenced 

not only by the same aspects, but also by poor luminosity 

conditions and background occlusion with potential impact on 

global context perception. Thereby, a training process 

encompassing influence conditions likely to integrate a fire 

deflagration situation is of major importance for an effective 

detection of the element of interest. As in most of supervised deep 

learning problems, dataset is a key component for success. 

 

6. CONCLUSIONS AND FUTURE WORK 

In a rapid climate changing conjuncture, establishing tools for 

dealing with eventual catastrophe events becomes increasingly 

relevant. With particular focus in open-sky fire deflagrations in 

rural/forested area, this paper aims to propose a tool that aims to 

simulate fire events within virtual environments - endowed, for 

example, by photogrammetric models - and use the knowledge of 

hypothetical synthetized situations to endurance machine-based 

detection in real-world. An FPN deep learning approach was 

applied to learn the synthetized scenarios in a first instance, and 

then perform predictions in real images of burning fire.  

More specifically, the study in this paper involved 16 images of 

a virtual scenario enriched with a north-eastern Portugal forested 

area photogrammetric model and fire simulated through particle 

systems for learning purposes. After 50 training epochs, the 

generated predictive model was used to make estimations upon 

real images of burning fire in rural/forested areas. In spite of the 

not so high precisions in segmenting fire, the element of interest 

was detected in the 10 tested images with satisfactory results, 

considering the small number of training images and the lack of 

heterogeneity covering different possibilities. In one image of the 

testing dataset, more complying with the conditions of the used 

virtual environment, a similarity rate of 87% (estimated 

segmentation vs. ground truth mask) was reached, somehow 

pointing out the potential of the virtual-to-real transfer learning 

approach and justifying the need for a deeper study. 

Future work must encompass a wider study with a broader 

dataset, techniques for data augmentation and stratification, as 

well as more heterogeneous hypothetical conditions using, for 

example, different photogrammetric models regarding distinct 

contexts. Also, a revision to the simulator should be carried out 

to improve the fire masking mechanisms, avoiding the probable 

entropy that might be rising from smoke particles partially 

annotated as as fire. 
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