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ABSTRACT: 

Availability analysis of cloud-free optical remote sensing data is a prerequisite for remote sensing applications. In this study, spatio-

temporal availability differences of cloud-free Landsat TM, ETM+, and OLI sensors images over Three Gorges Reservoir Area 

(TGRA) were analyzed from 1986 to 2019 based on the Google Earth Engine (GEE). The results show that: 1) in Summer, 

especially in August, the probabilities of obtaining Landsat images with no more than 30% cloud cover (CC) is higher. 2) the 

northeast of TGRA has higher probability of acquiring cloudless images than the southwest. 3) In TGRA, annual monitoring which 

require at least one cloud-free observation in a year largely unaffected by CC, but when considering seasonal monitoring, cloud 

contaminate will become a limitation, and monthly monitoring in this area is basically not feasible even if the three sensors data are 

combined. The results of this paper will provide important references for the research of using optical data in this area, and although 

the research area is relatively small, the analysis method and the program developed in this paper have no restrictions on the area. 

* Corresponding author: Yumin Tan
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1. INTRODUCTION

Landsat has become the most commonly used optical remote 

sensing data in the study of regional time series analysis 

because of its long history of surface observation, high spatial 

resolution, and free access policy. However, the most obvious 

challenge for their application is cloud cover (CC) and cloud 

shadows (Kovalskyy and Roy, 2013; Asner, 2001), particularly 

in some tropics. Although the Landsat satellite can overpass the 

same location on earth every 16 days, but due to cloud 

contamination, in some areas, the interval between two 

cloudless observations is often greater than 16 days, some even 

last as long as a year (Bai et al. 2019). Thus, analysis the 

availability of Landsat images is a paramount prerequisite for 

many optical remote sensing applications.  

Three Gorges Reservoir Area (TGRA) is a popular independent 

research area since the construction of the Three Gorges Dam. 

With millions of immigrants and the reservoir began to 

impound, the land use/land cover in the region has undergone 

rapid and tremendous changes in the past decade. Researches 

on land use/land cover change detect (Zhang et al. 2009; Tan et 

al. 2016), forest monitoring (Zeng et al. 2008), water 

monitoring (Wang et al. 2013) and geological hazards (Tan et al. 

2015) in this area has been carried out continuously. Most of 

these researches are based on optical remote sensing data. 

Availability analysis of optical data can provide a 

comprehensive understanding of the data situation and help to 

select data when conducting research in the region. To our 

knowledge, cloud cover analysis of all available Landsat data 

(TM, ETM+ and OLI in particular) over TGRA has not been 

reported to date. Although the availability analysis of Landsat 8 

data in China has been carried out (Xiao et al. 2018), but the 

study of country scale will weaken the statistical characteristics 

of region scale, and only the data of Landsat 8 were analyzed. 

Many studies (Asner, 2001; Sano et al. 2007; Kovalskyy and 

Roy, 2013; Ju and Roy, 2008) have analyzed the availability of 

optical data in different parts of the world. Li et al. (2018) 

studied the acquisition probability differences in cloud coverage 

of the available Landsat observations over mainland Southeast 

Asia. Laborde et al. (2017) analyzed the Landsat 8 cloud-free 

observations in South East Asia. Xiao et al. (2018) analyzed the 

spatio-temporal differences in cloud cover of Landsat-8 OLI 

across China. Sano et al. (2007) studied the spatial and temporal 

probabilities of obtaining cloud-free data of Landsat TM, 

ETM+ over the Brazilian tropical savanna. These studies 

mostly download the Landsat metadata from the USGS portal, 

process and analyze locally, which takes a long time to 

calculate, such as Sano et al. (2007) took about 208 days in 

their study. 

As supercomputers and high-performance computing systems 

are becoming more and more abundant, large-scale cloud 

computing as a commodity is widely available. Google Earth 

Engine (GEE) is one of the cloud-based platforms that can 

processing large-scale of geospatial datasets (Gorelick et al. 

2017). The platform houses a large repository of publicly 

available geospatial datasets, users can access and analyze data 

on this platform without download it. Since there is no need to 

download the data locally, the algorithm runs in the cloud, 

which makes a lot of work more efficient (Li et al. 2019). Based 

on this, we studied data availability based on GEE, and as far as 

we know, there is no research done this yet. 

In this study, more than thirty years (from April 1986 to 

January 2019) Landsat 5/7/8 TM, ETM+, and OLI historical 
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data (a total of 10876 scenes) were used to evaluate the monthly 

and yearly availability of Landsat data over TGRA, unlike other 

similar research methods, this paper uses GEE to analyze the 

availability of Landsat data, which greatly improves the 

efficiency. and a series of tools for data availability analysis are 

developed based on GEE. The objective of this study is twofold: 

(1) to understand the spatial and temporal availability of 

Landsat TM, ETM+, and OLI sensors in TGRA; (2) to assess 

the feasibility of using Landsat satellite series for annual, 

seasonal or monthly monitoring in this region or the impact of 

CC on these tasks. 

 

2. MATERIALS AND METHODS 

2.1 Study Area  

The Three Gorges Reservoir Area (Figure 1) refers to the area 

inundated by the Yangtze Three Gorges Project, located in the 

central territory of the Yangtze River (105°44´-111°39´E, 28°

32´– 31°44´N), covering an area of approximately 5800 km2 

(Wu et al. 2004). It is an important ecological buffer of the 

Yangtze River basin. Due to the impact of the largest hydraulic 

project in the world—the Three Gorges Dam, as well as the 

migrant’s resettlement, it has experience, extensive and rapid 

land cover and land use change and has been a hot area with 

numerous ecological environment issues in the past two 

decades.   

The reservoir area belongs to the subtropical and humid climate, 

with a mean annual precipitation of 1250 mm. After the Three 

Gorges impoundment, the area of the water area enlarged and 

the evaporation of water increased, the weather here is cloudy 

and foggy throughout the year. It is hard to obtain cloud-free or 

little cloudy images in this area. 

 

Figure 1. The location of the Three Gorges Reservoir Area 

(TGRA) and the 11 Landsat footprints (path/row) over this 

region.  

 

2.2 Data and Analysis Platform 

Landsat data can obtain about 183 km×170 km scenes defined 

in a Worldwide Reference System (WRS-II) of path and row  

coordinates (http://landsat.usgs.gov/tools_wrs-2_shapefile.php) 

(Ju and Roy, 2008), and there are 11 path and row (PR) 

coverage frames (or footprints, e.g., 128/39) of Landsat satellite 

over TGRA (Figure 1).   

 

The data used in this paper are shown in Table 1. Since the 

GEE platform has uploaded the Landsat data of USGS, we 

calculate and analyze the data directly on GEE platform 

(https://code.earthengine.google.com/) instead of downloading 

it. The USGS produces data in 3 categories for each satellite: 

Tier 1 (T1), Tier 2 (T2) and Real Time (RT). The data that 

meets geometric and radiometric quality requirements are Tier 

1 data, while the unsatisfactory data is Tier 2 data. The RT data 

is unevaluated data (it takes as much as a month). Newly 

captured scenes are added to the T1_RT collection daily. When 

an RT scene is reprocessed, it will be classified as T1 or T2, 

which will be removed from T1_RT (Google Developers, 2019). 

As the time node of the data used in this paper is January 2019, 

it is not sensitive to removals or potentially mis-registered 

scenes.  

 

Data Data ID on GEE Time 

Landsat 

5 TM 

LANDSAT/LT05/C01/T1_SR 
Jan 1, 1984-

May 5, 2012 

LANDSAT/LT05/C01/T2 
Jan 1, 1984-

May 5, 2012 

Landsat 

7 ETM+ 

LANDSAT/LE07/C01/T1_RT 
Jan 1, 1999-

Jan 1, 2019 

LANDSAT/LE07/C01/T2 
Jan 1, 1999-

Jan 1, 2019 

Landsat 

8 OLI 

LANDSAT/LC08/C01/T1_RT 
Apr 11, 2013-

Jan 1, 2019 

LANDSAT/LC08/C01/T2 
Apr 11, 2013-

Jan 1, 2019 

Table 1. Data used in this study. 

 

It should be note that the T2 data is usually useless, but when 

calculating the probability of data acquisition, we consider T2 

data, which is reasonable, because T2 data will affect the 

probability of acquisition. But in calculating the number of 

cloud-free data, we did not take T2 data into account. This is 

because the cloud cover of T2 data also have low value like 

10% or 5%, but this kind of data is still invalid and unuseful. 

When we do the statistics of cloud-free data, we use the cloud 

cover threshold to filter the data. If the T2 data be considered, 

the result will be wrong and unreferential.  

 

The thresholds of cloud cover range from 0 to 100% in the 

Landsat data, which can be divided into ten levels (0-9) at 10% 

intervals (Asner, 2001). Level 0 represents the CC of scenes no 

more than 10% (or 0% ≤ CC ≤ 10%), and level 1 represents 

the range from 10% to 20% (including 20%). Following this 

categorization, the level 9 represents greater than 90%, but less 

than or equal to 100% (or 90% < CC ≤ 100%). CC thresholds 

are referred as 0%, 10% to 100% or level 0, level 1 to level 9 in 

this study. 

 

In total, there were 10876 scenes (Table 2) of Landsat available 

over TGRA from April 1986 to January 2019, comprising 5342 

TM scenes (1986–2011), 4128 ETM+ scenes (1999–2019), and 

1406 OLI scenes (2013–2019). The number of these data 

statistics at different cloud levels are shown in Table 2. The 

statistics in front of the slash includes T1, RT and T2 data, 

while the statistics after the slash removes the T2 data. As can 

be seen from Table 2, with the removal of T2 data, the number 

decreases greatly, especially in the CC levels of 9. 
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Sensors Total 

scenes 

cloud cover (CC) levels 

0 1 2 3 4 5 6 7 8 9 

Landsat 5 

TM 

5342/ 

2565 

735/ 

617 

339/ 

249 

311/ 

230 

250/ 

207 

245/ 

207 

279/ 

235 

285/ 

233 

312/ 

245 

385/ 

213 

2201/ 

129 

Landsat 7 

ETM+ 

4128/ 

2238 

517/ 

493 

268/ 

255 

196/ 

189 

207/ 

194 

188/ 

179 

199/ 

190 

212/ 

191 

210/ 

176 

284/ 

173 

1847/ 

198 

Landsat 8 

OLI 

1406/ 

833 

136/ 

123 

89/ 78 76/ 68 60/ 55 74/ 70 81/ 73 61/ 60 85/ 82 110/ 98 634/ 126 

Table 2. Landsat TM, ETM+, and OLI scenes acquisition statistics in TGRA and the number of scenes at varies cloud cover (CC) 

levels (0–9) from April 1986 to January 2019. (Note: Statistics that do not contain Tier 2 data sets are behind the slashes.) 

 

2.3 Acquisition Probability Calculation of Different CC 

Thresholds 

For each land scene at footprint, the acquisition probability (AP) 

of a successful acquisition (S) in a given month (m) was 

calculated using formula (1) (Asner 2001).   

 

       
N

S
SAP

y

m

tm

t


)(                             (1) 

 

where    m = a given month (January, …)  

y = a given year (i.e., between 1986 and 2018) 

t = the CC thresholds (0, 10%, …, or 100%) 

N = the total number of observation scenes in month m 

in the entire Landsat historical archive. 

 

Similarly, the annual probabilities are calculated per year rather 

than per month. The calculation and analysis of AP etc. in this 

paper are carried out on the GEE platform. 

 

3. RESULTS AND DISCUSSION 

3.1 Monthly Average Acquisition Probability Differences 

among TM, ETM+, and OLI Sensors 

In order to study the acquisition probability varies at different 

cloud cover thresholds, 10876 scenes of Landsat TM, ETM+, 

and OLI sensors in TGRA acquired from April 1986 to January 

2019 were used to obtain the monthly cumulative acquisition 

probability (Figure 2). As 30% threshold of CC likely 

represents the maximum allowable value for land-cover 

analyses. The 10%, 20%, 30% thresholds of CC were mainly 

concerned and selected in this study to the statistical analysis.  

  

It can be seen that the cumulative acquisition probability curve 

has risen sharply in the cloud cover range of 90%-100%, 

indicating that most of the data acquired in TGRA have more 

than 90% CC. The monthly acquisition probability curves are in 

the shape of a willow. At the CC threshold of 30%, the average 

monthly acquisition probability of the Landsat TM, ETM+, and 

OLI sensors is 0.259, 0.246, 0.225 respectively, less than the 

Landsat OLI acquisition probability of 49.6% in China at 30% 

CC threshold (Xiao et al. 2018). For Landsat TM sensor, at 

30% CC threshold, the acquisition probability is highest in 

August (0.340), followed closely by May, and lowest in 

January (0.160), followed by February and December. For 

Landsat ETM+ sensors, the highest probability of acquisition 

images with CC no more than 30% is in July (0.320) and 

August, while the lowest probability in February (0.170), 

followed by December. As for the Landsat OLI sensor, the 

acquisition probability is highest in August (0.369), followed by 

October and July, lowest 
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in March (0.131), followed by March and February. 

 

 

Figure 2. The cumulative average monthly acquisition 

probabilities (APs) of different CC thresholds range from 0–

100% for all Landsat scenes of TM, ETM+, and OLI sensors in 

TGRA. 

 

Spatially, the acquisition probability of Landsat in the TGRA 

has some spatial differences at the 30% CC threshold, 

especially in winter (December–February), the difference 

between Northeast and southwest is obvious (Figure 3), and the 

acquisition probability in the northeast is greater than that in the 

southwest. In December, the probability of obtaining cloud-free 

Landsat is the lowest that 63% of the scenes showed less than a 

20% chance of obtaining images with no more than 30% CC. In 

Spring (March–May) and Summer (June–August), the 

probability is higher, especially in August and July. The 

chances of getting no more than 30% CC images in 80% of the 

scenes of TGRA is more than 30% in August. 

 

 
 

 
 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W9, 2019 
ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment (RSAE), 25–27 October 2019, Nanjing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W9-1-2019 | © Authors 2019. CC BY 4.0 License.

 
4



 

 

Figure 3. Monthly average of acquisition probability of Landsat TM, ETM+, and OLI historical data over TGRA between 1986 and 

2019 at 30% or less CC thresholds. 

 

3.2 Annual Average Acquisition Probability Differences 

among TM, ETM+, and OLI Sensors 

In order to analyze the spatial difference of the annual 

acquisition probability of cloud-free data in TGRA, the yearly 

average of acquisition probabilities of Landsat historical data 

over TGRA between 1986 and 2019, including data from TM, 

ETM+, and OLI sensors at 10%, 20%, and 30% CC thresholds 

were mapped (Figure 4). It can be seen from Figure 4 that the 

north-eastern part of the TGRA (the head of the TGRA) has a 

higher probability of obtaining cloud-free data. In contrast, the 

acquisition probability in the southwest is lower. In most areas 

of the TGRA, the probability TM acquiring no more than 10% 

CC is between 20% and 30%. Although the probability of 

acquisition increases with the increase of cloud threshold, the 

acquisition probability is just about 20%-40% in 90% of the 

TGRA at 30% CC threshold even for the TM sensor which has 

relatively high AP, and in the northeast, it is 30%-40%. 

 

 

Figure 4. Yearly average of acquisition probabilities of Landsat TM, ETM+, and OLI historical data (10876 scenes) at 10%, 20%, 

and 30% CC thresholds over TGRA between 1986 and 2019. 

 

3.3 Spatial Distribution of Cloudless Data Count 

Satellite available data statistics can intuitively display the 

number of available data. For this reason, we have developed a 

tool on GEE platform to generate the spatial distribution of 

cloudless Landsat data based on the work of Li et al. (2019). As 

shown in Figure 5, the left map is a query condition, and 

different conditions are set to generate the number of 

observations satisfying the condition. The right one is the 

spatial distribution of count of Landsat 8 with less than 20% 

cloud cover over the TGRA which satisfied the conditions set 

on the left. Note that the statistics do not include T2 data. As 

can be seen from the results of the query, only one scene of 

Landsat 8 is available for some region in a year. 
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a) Conditional query interface;                               b) Results satisfied the conditions set on the left. 

Figure 5. Landsat spatial distribution of Landsat data archives in Three Gorges Reservoir Area. 

 

3.4 Time Distribution Analysis of Available Data for The 

Area Covered by One Scene  

The low probability of cloud-free data acquisition in some area 

is the key to restrict regional monitoring. Considering the low 

probability of cloud-free data acquisition in the southwestern 

region of TGRA, we made time distribution statistics for all the 

Landsat TM, ETM+, and OLI historical data (T1 and RT) on a 

footprint (path/row is 127/39) in the region to analyze the 

feasibility of monthly, quarterly and annual land surface change 

monitoring in the TGRA (Figure 6). The time distribution map 

of remote sensing archived data based on a scene can clearly 

show the time distribution of available data that meet certain 

conditions (like CC no more than 10%, 20% or 30%) in the area 

covered by the scene, thus helping to analyze and determine the 

time granularity (monthly, seasonal or annual) of monitoring a 

land surface change or select data for image fusion. 

 

 

Figure 6. Time Distribution of history archive data of Landsat TM, ETM+ and OLI at Cloud Coverage threshold <=30% over one 

scene (path/row:127/39) footprint. (DOY means the day of year) 

 

The time distribution of history archive data from Landsat TM, 

ETM+ and OLI sensors at 30% CC threshold over the footprint 

of 127/39 is shown in Figure 6. The origin indicates that one 

scene contains less than or equal to 30% CC, and the minimum 

distance between the two origins of the same colour is the 

revisit period of the Landsat satellite, 16 days. As can be clearly 

seen from Figure 6, 1) As time goes on, more and more data are 

available in this area, from the previous TM sensor alone, to the 

later ETM+ and OLI sensors. Multiple satellite sensors work 

simultaneously make more data captured; 2) The available 

Landsat data with CC no more than 30% is less in winter 

(DOY:1-59/60,335/336-365/366) and mostly distributed in 

summer (DOY:152/153-243/244); 3) Since 1986, there are at 

least one scene image with no more than 30% CC in the area 

every year, even if only Landsat TM sensor is considered. In 

2000, TM and ETM+ combine acquired 11 observations with 

CC Less than 30%, indicating that annual monitoring in the 

region is feasible; 4) It is difficult to carry out seasonal 

monitoring in this region, as some years like 2007-2012 are lack 

of qualified data in the winter. If the division of seasons is not 

so strict (i.e., the data of one season can be replaced by the data 

of the end of the last season or the beginning of the next season) 

and multi-sensor combination is considered, it is feasible to use 

Landsat for seasonal monitoring in some years; 5) Since 1986-

2019, no year has cloud-free data per month, even in the case of 

a three-sensor combination, which means that it is almost 

impossible to use Landsat only for monthly monitoring in 

TGRA. 

 

4. CONCLUSIONS 

The special weather conditions in the TGRA make it difficult to 

obtain cloud-free remote sensing images in the area. As the 

basic work for the study of land surface change monitoring, 

time series analysis and data fusion in the region, this paper 

analyzes the historical archive data of Landsat series satellites 

(TM, ETM+ and OLI) from April 1986 to January 2019 in 

TGRA. Based on the GEE, total 10876 scenes of Landsat 

historical archive data were analyzed quickly by means of 

acquisition probability, spatial difference mapping and time 

distribution mapping. The statistical analysis shows that in 

summer, especially in August, the probabilities of acquiring 

Landsat images with cloud cover no more than 30% is higher, 

and the probability of obtaining similar data in winter is less. 

The acquisition probability of cloud-free data in the TGRA is 

different in spatial distribution, especially in the winter, and the 

probability of obtaining data with no more than 30% CC in the 

northeast is greater than that in the southwest. Considering that 
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the southwestern part has the lower probability of obtain cloud-

free data which will restrict the surface monitoring tasks of the 

entire TGRA, the time window diagram of remote sensing data 

is used to plot the time distribution of the cloud-free data of 

some area covered by a certain footprint in the southwest. The 

analysis results show that it is feasible to carry out annual 

change monitoring tasks in the TGRA. But even considering the 

combined use of data from different Landsat sensors, due to the 

lack of data from winter, it is still difficult to use the Landsat 

family data for seasonal monitoring tasks in some years. As 

month-monitoring task require shorter time interval of cloud-

free data, it is almost impossible to use only Landsat family 

data for such monitoring tasks in this region.   

 

The lack of cloud-free data will limit the implementation of 

surface monitoring tasks based on remote sensing in the region, 

especially for seasonal and monthly monitoring. This suggest 

the need for the development of new approaches to mitigating 

cloud contamination in the TGRA. With the development of 

remote sensing big data, especially the emergence of platform 

like Google Earth Engine which provides a good tool for data 

processing (Gorelick et al. 2017). It is more economical and 

effective to form high-frequency cloud-free data by combining 

sub-scenes. In addition, with more and more of remote sensing 

satellites launched, and increasing remote sensing data are 

available free of charge, such as the Sentinel series, fusion 

multi-source remote sensing data (Bai et al. 2019), or adopt 

radar data (Reiche et al. 2015) is also an option.  

 

The results and conclusions provide useful information for the 

remote sensing application in this region, are the practical 

guidance for selecting cloudless Landsat data for land cover 

change monitoring, time series analysis, or multi-source remote 

sensing fusion research in TGRA. As many Landsat application 

often require at least one cloud-free observation in two different 

seasons, or at least a pair of cloud-free observations occurring 

no more than 16, 32, 48, 64, and 80 days apart within a year 

and season. The feasibility of carrying out these frequency 

monitoring tasks in this area can be studied in the future. 

Although the research area of this paper is relatively small, the 

analysis method and the program developed in this paper have 

no restrictions on the area, it will be easy to get a wide range of 

results by slightly changing some programs.  
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