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ABSTRACT: 

This paper provides an aerosol classification method based on remote sensing data in Guangdong, China in year 2010 and 2011. Aerosol 

Optical Depth, Angstrom Exponent and Ultraviolet Aerosol Index, as important properties of aerosols, are introduced into classification. 

Data of these three aerosol properties are integrated to establish a 3-dimension dataset, and k-means clustering algorithm with 

Mahalanobis distance is used to find out four clusters of the dataset, which respectively represents four aerosol types of urban-industrial, 

dust, biomass burning and mixed type. Prior knowledge about the understanding of each aerosol type is involved to associate each 

cluster with aerosol type. Temporal variation of the aerosol properties shows similarities between these two years. The proportion of 

aerosol types in different cities of Guangdong Province is also calculated, and result shows that in most cities urban-industrial aerosols 

takes the largest proportion while the mixed type aerosols takes the second place. Classification results prove that k-means cluster 

algorithm with Mahalanobis distance is a brief and efficient method for aerosol classification. 

1. INTRODUCTION

Atmospheric aerosol particles can influence the global climate 

change not only by direct scattering and absorbing the solar 

radiation, but also by indirect ways like acting as cloud 

condensation nuclei (Ealo et al., 2018). Aerosols’ diverse optical 

properties, component and size distribution can lead to different 

effects on climate (Chen et al., 2019). For example, dust aerosols 

have large size distribution and a scattering tendency, which can 

result in the reduction of visibility (Renard et al., 2018). Biomass 

burning aerosols have small size particles and an absorbing 

tendency because of their black carbon component (Hamill et al., 

2016). The rapid increasing emissions of secondary aerosols 

caused by industrialization and urbanization can lead to an 

increase in air pollution and even extremely severe haze events, 

which have harmful impacts on environment, economic and 

health (Huang et al., 2014). Large quantities of aerosol particles 

produced by biomass burning can influence cloud microphysical 

or even disturb biogeochemical cycles (Crutzen et al., 1990). 

Aerosol type classification will help refine aerosol optical models 

and reduce uncertainties in satellite observations of the global 

aerosol and in modeling aerosol impacts on climate (Dubovik et 

al., 2002). Thus, making sense of the aerosol types is great of 

significance and further effort should be put on it.  

Traditional methods that monitor and analyze the aerosol types 

mainly depend on ground-based observation sites, which are 

limited to space. And due to the long-distance transport of 

aerosols, sites’ observation doesn’t always demonstrate the real 

environment. Using remote sensing data to classify the aerosol 

types has the advantages of higher spatial and temporal resolution, 

and a consecutive series of historical data can be obtained. 

Kalapureddy et al. (2009) analyzed the aerosol types over the 

 Corresponding author.

Arabian Sea in the pre-monsoon season and found that a single 

aerosol type in each location can only exist under specific 

conditions while the presence of mixed type aerosols is more 

usual. Sreekanth (2013) analyzed an 8-year data set of aerosol 

properties in Bangalore, India and regarded that aerosol 

transformation processes were expected responsible for the 

mixed type aerosols. In addition, ground AERONET-based 

classification was also useful in interpreting aerosol acquisitions 

from remote sensing data (Hamill et al., 2016). 

Studies about aerosol type classification are mainly based on 

aerosol properties which can be extracted from remote sensing 

data product. Aerosol Optical Depth (AOD) is an aerosol optical 

property which describes the aerosol’s ability of extinction, while 

Angstrom Exponent (AE) is used to measure the size distribution 

of aerosol particles. If aerosol has a large size distribution, then 

its AE value is small, and a large value for small size distribution. 

Ultraviolet Aerosol Index (UVAI) is an optical property which 

describes the aerosol’s absorbing ability. Absorbing aerosols 

yield positive UVAI values, while non-absorbing or weak-

absorbing aerosols yield small negative UVAI values. Different 

types of aerosol’s properties are distinguished with each other, 

making them possible to be characterized by remote sensing data. 

Patrick uses aerosol parameters of Angstrom Exponent, Single 

Scattering Albedo (SSA) and Refraction Index (RI) to classify 

the aerosol types. Kumar et al. (2018) established AOD-AE 

threshold model to classify the key aerosol type and calculate the 

frequency distribution in Yangtze River Delta, China. Chen et al. 

(2016) combines Aerosol optical Depth with Aerosol Relative 

Optical Depth (AROD) to classify the aerosol types. Traditional 

classification methods focused on giving a threshold value for 

each aerosol property, and could separate the dataset by linear 

plane or hyperplane. However, for those datasets with intensive 
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inner structure, threshold values will not help. Clustering 

algorithm will be more suitable to discover the inner structure of 

the multi-dimension dataset so it is applied in this paper. 

The research region in this study is Guangdong, a coastal 

province with the most rapid development of industrialization 

and urbanization in China. Guangdong has diverse types of 

aerosol and according to the emissions sources, aerosol types are 

divided as urban-industrial (UI), biomass burning (BB), mixed 

type and dust. These four aerosol types mainly include all the 

emission sources in Guangdong. A further understanding for 

aerosol types and their properties will help to make control of 

aerosols in Guangdong. Tan et al. (2016) studied the aerosol 

optical properties and the mixing state of black carbon in the 

Pearl River Delta of Guangdong and gave a description on black 

carbon’s absorption ability. Yin et al. (2017) used numerical 

models to identify the source contributions to aerosols pollutants 

and industry sources were the major contributors in Guangdong. 

However, previous researches about aerosol types in Guangdong 

mainly concentrated on a particular type of aerosol or lacked for 

spatial and temporal resolution. Thus, aerosol classification with 

remote sensing data in Guangdong Province will make sense of 

the aerosol sources and the pollutants raised by aerosols.  

This paper aims at giving a method for aerosol classification. 

Guangdong Province and time from 2010 to 2011 are chosen as 

research region and research period. Aerosol properties of 

Aerosol Optical Depth, Angstrom Exponent and Ultraviolet 

Aerosol Index from different data sources are integrated to 

establish a 3-dimension dataset for aerosol classification. K-

means clustering algorithm with Mahalanobis distance is 

involved to find out four clusters of the dataset, which 

respectively represents four aerosol types of urban-industrial, 

dust, biomass burning and mixed type. 

2. DATA AND METHOD

2.1 Data Acquisition 

Aerosol properties of AOD, AE and UVAI are integrated to 

establish a 3-dimension dataset. AOD and AE data are obtained 

from the product MOD04_L2 of Moderate-Resolution Imaging 

Spectroradiometer (MODIS) with a spatial resolution of 10 km x 

10 km. MOD04_L2 is a daily level-2 product which monitors the 

ambient aerosol properties. AOD data is from the subset 

‘Optical_Depth_Land_And_Ocean’ at 0.55 micron while AE is 

from the subset ‘Deep_Blue_Angstrom_Exponent_Land’. AE is 

calculated between 0.412/0.47 micron for bright surfaces and 

0.47/0.65 micron for vegetated surfaces. UVAI comes from 

Ozone Monitoring Instrument (OMI) on the NASA’s Aura 

spacecraft with a spatial resolution of 13 km x 24 km and 

temporal resolution of 98.8 minutes. It is a dataset that describes 

a multi-decadal Fundamental Climate Data Record (FCDR) of 

aerosol properties from a 32-year record of satellite near-UV 

observations. UVAI is a measure of the departure of the observed 

spectral dependence of the near-UV upwelling radiation at the 

top of the actual Earth surface-atmosphere system from that 

calculated for a hypothetical pure molecular atmosphere bounded 

at the bottom, which is quantitatively defined as: 

𝑈𝑉𝐴𝐼 = −100𝑙𝑜𝑔
𝐼𝑜𝑏𝑠

𝐼𝑐𝑎𝑙
(1) 

where Iobs = observed radiance 

Ical = calculated radiance 

Time series from January 2010 to December 2011 is chosen. And 

geolocation from 20°N to 26°N and 109°E to 118°E are 

restrained in order to cover the whole Guangdong Province. Each 

product is incomplete and has invalid data in different dates or 

regions, so matching up the pixels with valid AOD, AE and 

UVAI values in the same day is necessary to satisfy the training 

process. After the extraction, totally 3,064 pixels for year 2010 

and 6263 pixels for year 2011 are integrated as the training data 

set. Training pixels are arranged in the format of vectors, and the 

ith pixel xi in the dataset can be represented as: 

xi = [AODi, AEi, UVAIi] (2) 

2.2 K-means Clustering Algorithm 

The aerosol classification process is an unsupervised method 

because there is no label data for error calculation and correction. 

Thus, clustering algorithm is involved to find the implicit 

structure of intensive clusters in the multi-dimension data set 

without label data. Among several kinds of clustering methods, 

k-means clustering algorithm is the most common used for its

simplicity and efficiency. The first process of training is to

randomly generate the vectors c of 4 clusters, which correspond

with 4 aerosol types to be classified in this study. For each

training point xi, distance from xi to each cluster cj is calculated

by turns and the cluster with minimum distance is chosen as the

training point’s classification result. An iteration is finished after

classifying all the training points by once, and the new center

vector cj of each cluster are recalculated using the formula

(3).The new jth center c after an iteration is defined as:

𝒄𝑗 = [𝐸(𝐴𝑂𝐷), 𝐸(𝐴𝐸), 𝐸(𝑈𝑉𝐴𝐼)]   (𝑗

= 1, 2, 3, 4)       (3)

where E means the average exception of each property. 

In a new turn of iteration, a training point will be allocated to a 

new cluster if distance from this point to the new cluster’s center 

is smaller than the former one. In iteration, the centers of each 

cluster and the number of points allocated to each cluster are 

dynamically changing. Do the iteration until the numbers of 

training points that change classification result is smaller than a 

certain number or times of iteration reach a limited value. After 

clustering, inner structure within the 3-dimension dataset will be 

found and training points will be allocated to each cluster. 

2.3 Mahalanobis Distance 

Common k-means clustering algorithm uses Euclidean distance 

to measure the distance between training point xi and the cluster 

center cj, but Euclidean distance has the limit of solving the scale 

variation and correlation problems within different dimensions. 

AOD, AE and AI data are not in the same scale and the 

correlations among these parameters are not clear. For example, 

AOD represents the ability of extinction while UVAI represents 

the ability of absorption, so UVAI may be correlated with AOD. 

As a 0result, Mahalanobis distance is applied in this study instead 

of Euclidean distance. Mahalanobis distance DM of two vectors 

can be calculated as followed: 

𝐷𝑀 = (𝒙 − 𝒄)𝑇𝑺−1(𝒙 − 𝒄)
1/2

   (4) 

where      S = covariance matrix of AOD, AE and AI 

The covariance matrix can account for the diffusiveness of a 

cluster and cross-correlations among different dimensions of a 

cluster. Compared with Euclidean distance, Mahalanobis 
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distance is scale-invariant and can efficiently eliminate the 

correlation of each dimension. 

3. RESULTS AND DISCUSSIONS

3.1 Temporal Variation of Aerosol Properties 

Average monthly values of AOD, AE and AI are calculated 

respectively to show the temporal variation in 2010 and 2011 

(Figure 1). Results show that AOD data have the similar temporal 

characteristics between 2010 and 2011, with the highest value in 

spring (March in 2010 and April in 2011) (Figure 1a). Higher 

values of AE in autumn and winter indicate a smaller size 

distribution of aerosol (Figure 1b). UVAI values also reach 

largest in spring (March in 2010 and February in 2011), which 

means that aerosols consist of more absorbing component in 

these months. 

Figure 1. Temporal variation of 2010 and 2011, (a) AOD, (b) 

AE, (c) UVAI 

Though the variation tendency between 2010 and 2011 is the 

same, there remains differences in absolute values. The reason 

may be that the aerosol properties’ values shown in Figure 1 don't 

include pixels without complete value of AOD, AE or UVAI, so 

pixels from certain regions or dates are excluded. In addition, the 

choice of data sources and the algorithms used to inverse the data 

may contribute to the differences. 

3.2 Results of K-means Clustering Algorithm 

After the process the k-means clustering algorithm, the center of 

each cluster has been found out (Table 1). For the dimension of 

AOD, cluster 4 has the largest value approximately equal to 1 and 

the rest clusters have of values near to 0.5. For the dimension of 

AE, cluster 3 has the smallest value, which means to the aerosol 

type with the largest size distribution. Cluster 1’s UVAI value is 

negative, while others’ is positive, so aerosols with different 

ability of absorption are separated.  

AOD AE UVAI 

2010 

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

0.555 

0.447 

0.510 

0.995 

1.380 

1.445 

0.484 

1.357 

-0.301

0.585

0.332

0.862

2011 

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

0.445 

0.526 

0.571 

1.075 

1.459 

1.372 

0.525 

1.540 

-0.367

0.616

0.102

0.765

Table 1. The center of each cluster in 2010 and 2011 

Similar results are obtained between year 2010 and 2011. Figure 

1 shows that the centers of clusters between 2010 and 2011 are 

located in the similar coordinates in the 3-dimension scatter plot, 

indicating that the similar clusters are achieved and the same 

classification logic can be used between 2010 and 2011. 

Figure 2. 3-dimension scatter plot of the centres of each cluster 

in year 2010 and 2011 

Take the classification results of 2010 for a further analyze. 

Projecting the classification results of different clusters into 2-

dimension scatter plot will give a more direct understanding 

(Figure 3). Figure 3a shows that cluster 3 can be easily 

distinguished with other aerosol types for its large size 
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distribution. Aerosols of cluster 2 and 4 can’t be separated 

directly in Figure 3a because they have the similar value range in 

both AE and AOD dimensions. However, in the scatter plot of 

AOD and UVAI they can be easily characterized (Figure 3b). 

Figure 3c shows that cluster 3 and 4 can not only separated by 

AE values, but also by AOD values. 

Figure 3. Scatter plots of different dimension combination in 

2010, (a) AE VS UVAI, (b) AOD VS UVAI, (c) AOD VS AE 

3.3 Aerosol Types Characterization 

By far, aerosol clusters with different size distribution, ability of 

extinction and absorption are distinguished. But they should be 

associated with aerosol types and prior knowledge about aerosol 

type characterization should be involved. Previous studies have 

researched how to characterize the cluster’s aerosol type. Hamill 

et al. (2016) used aerosols from particulate regions to define the 

reference aerosol types. Aerosols from desert are regarded as dust, 

with characteristic of large size distribution, while aerosols from 

Amazon forest are regarded as biomass burning’s product, with 

small size distribution and high absorbing tendency, which 

means high angstrom exponent value and high aerosol index 

value. Chen et al. (2019) established an AOD-AE models and 

classify the aerosol types by their threshold. Pixels with 

0.2<AOD<1.2 and 0<AE<0.5 is regarded as dust, while 

0.5<AOD<1.2 and 1.5<AE<2.5 is regarded as urban-industrial or 

biomass burning.  

Dust aerosols have a large size distribution, so cluster 3 is 

regarded as dust type with the smallest AE values. Biomass 

burning and urban industrial have similar AOD and AE, but 

biomass burning aerosol consists of more black carbon and has 

higher AI, so cluster 4 is regarded as biomass burning, and cluster 

3 is regarded as urban-industrial. The last cluster is regarded as 

the mixed aerosol type, which means that the characteristic of this 

type doesn’t match any type of aerosol in prior knowledge. After 

the clustering and characterization, four clusters with their 

corresponding aerosol types are achieved. When a new pixel with 

valid AOD, AE and UVAI values needs to be classified, calculate 

its Mahalanobis distance with each cluster center and the aerosol 

type with minimum distance will be allocated to this pixel.  

3.4 Aerosol Partition in Guangdong Province 

The partition of each aerosol type in cities of Guangdong 

Province is shown in the Table 2. Due to the lack of data, some 

important cities, such as Shenzhen, Dongguan, which have less 

than 100 training points, are not shown in this table for the result 

is not accurate. 

Cities Mixed UI Dust BB 

Shaoguan 

Meizhou 

Qingyuan 

Heyuan 

Chaozhou 

Zhaoqing 

Jieyang 

Huizhou 

Guangzhou 

Shanwei 

Yunfu 

Jiangmen 

Yangjiang 

Maoming 

Zhanjiang 

27.5 

25.6 

32.7 

27.0 

20.9 

28.5 

34.6 

33.1 

26.9 

31.8 

29.1 

37.7 

28.2 

25.6 

30.3 

55.3 

62.7 

51.8 

63.1 

66.5 

55.4 

56.3 

57.8 

61.1 

59.2 

51.9 

44.3 

56.4 

55.5 

43.8 

10.7 

7.5 

11.2 

7.1 

4.7 

5.0 

3.5 

3.6 

5.1 

3.6 

4.1 

3.7 

5.7 

7.3 

6.7 

6.5 

4.2 

4.3 

2.8 

7.9 

11.1 

5.6 

5.5 

6.9 

5.4 

14.9 

14.3 

9.7 

11.6 

19.2 

Average 29.3 56.1 5.9 8.7 

Table 2. The proportion of aerosol types in different cities of 

Guangdong Province (%) 

Among the four aerosol types, urban-industrial takes an average 

of 56.1%, mixed type 30.3%, dust 6.7% and biomass burning 

16.7%. Guangdong is a province with highly urbanization and 

industrialization, so urban-industrial aerosol taking the most part 

consists with the facts. Mixed type aerosols may consist of 

marine aerosols, biogenic aerosols from nature sources and 

others, which results in mixed aerosol properties and difficulties 

in recognition. Biomass burning aerosols, the only cluster with 

largest size distribution and strong absorption tendency, is 

expected to be responsible for the increase of Angstrom 

Exponent in winter season and increase of Ultraviolet Aerosol 

Index in spring season. The requirement for fuel combustion in 

winter and straw burning on cropland in spring may contribute to 

the increase of biomass burning.  

3.5 Discussion 

In the process of training, the initial centres of the four clusters 

are given by random, but different random initial centres can 

reach to the same classification results, which means that the 
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training process of k-means clustering algorithm is convergent in 

this study and this cluster algorithm is suitable for aerosol 

classification. For further study, other aerosol optical properties 

such as Single Scattering Albedo and Refraction Index can be 

brought in to establish a data set with more dimensions. Other 

classification methods like Support Vector Machine (SVM) also 

can be used to make a cross validation with k-means clustering 

algorithm. 

Marine aerosols are not taken into consideration in this paper. 

Previous observation gave marine aerosols a strong absorption 

ability (UVAI>1), but the cluster with largest UVAI values 

obviously should be biomass burning type for its small size 

distribution. Time variation of UVAI also corresponds with 

biomass burning events in Guangdong province. In addition, 

aerosols with large UVAI values are distributed not only in 

coastal cities like Zhanjiang, Jiangmen, but also in inland cities 

like Zhaoqing. Confusion about the distribution of marine 

aerosols makes it difficult to be recognized. Another confusion is 

that mixed type aerosols’ UVAI value is negative, which means 

weak absorption or non-absorption aerosols. This may be 

accounted for the change of aerosol’ properties after mixing, or 

mixed type aerosols consist of another aerosol type not 

mentioned in this paper, which both need further research. 

4. CONCLUSIONS

This paper provides a method for aerosol classification based on 

remote sensing data in Guangdong, China. Aerosol properties of 

Aerosol Optical Depth, Angstrom Exponent and Ultraviolet 

Aerosol Index are used for classification and with k-means 

clustering algorithm, four clusters are found out. Combined with 

prior knowledge, the clusters are associated with aerosol type 

respectively. After training, when classifying a new pixel with 

valid AOD, AE and UVAI values, allocate it to the aerosol type 

with minimum Mahalanobis distance. The similar classification 

results between year 2010 and 2011 prove that k-means cluster 

algorithm with Mahalanobis distance is a brief and efficient 

method for aerosol classification. Proportion of each aerosol type 

in Guangdong is also calculated and result shows that in most 

cities urban-industrial aerosols takes the largest proportion while 

the mixed type aerosols takes the second place, which consists 

with the facts.  
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