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ABSTRACT: 

 

Land use and land cover changes (LUCC) affects the atmospheric environment directly or indirectly. Therefore, understanding the 

atmospheric response to LUCC is of great significance to maintain and improve the ecological environment. In this study, based on 

fine particulate matter (PM2.5) and LC products, we first compared the differences of PM2.5 between urban and surrounding areas, 

and then further investigated the variations of PM2.5 in different and land cover (LC) using Mann-Kendall (MK) test and Sen’s trend 

analysis approach at the district-level in India during 1998-2015. The results showed that the numbers of districts where the 

differences of PM2.5 (DPM2.5) between urban and the surrounding areas were greater than zero were increasing during 1998-2015.  

There is an upward trendency of annual mean PM2.5. The annual mean PM2.5 was higher than 40μg/m3 in 58% of India’s areas where 

there were mainly located in the Ganges plains of northern India with cropland (L01) and urban areas (L07). The annual mean PM2.5 

was less than 10μg/m3 were mainly found in north-western India with permanent ice and snow (L10), accounting for 10% of India’s 

area. There are significant positive trends of PM2.5 concentration in 90% of cropland (L01) and 88% of urban area (L07) and the 

average slope were 0.83μg/m3 and 0.82μg/m3 respectively, which were higher than those in the rest of LC. This research serves as 

the basis of reference for the equitable allocation of land resources and restructuring of land use and land cover patterns in urban 

areas of India that severely affected by air pollution. 
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1. INTRODUCTION 

The remarkable conversion of land from natural and 

agricultural areas into residential and urban have taken place 

since the rapid development of urbanization. These severe 

unsustainable use of natural resources over the years may lead 

to tremendous environment degradation (Justice et al., 2015). 

Deforestation, grassland degradation, soil desertification, 

together with other urbanization process impacts, all may 

reduces the air purification capacity of vegetation around the 

city. Furthermore, it have a significant positive effect on 

national fine particulate matter (PM2.5) concentrations increase 

in developing countries (Wang et al., 2019). Therefore, a better 

understanding of land use and land cover changes (LUCC) and 

their interactions with the atmospheric environment is essential 

for the sustainable management of natural resources, 

environmental protection and air quality, especially for address 

these LUCC issues that associated with air pollution (Vadrevu 

et al., 2017). 

 

As the world’s most populous nation, more than 34% of the 

population of India live in urban areas, and it is projected to 

reach 52.8% by 2050 (United Nations, 2019). India has been 

progressing on a path characterized by rapid urbanization along 

with population growth. Over recent decades, India has 

witnessed increasing concentrations of PM2.5 from multiple 

anthropogenic emissions sources, e.g., vehicles, manufacturing, 

electricity generation, construction and road dust, waste burning, 

and household energy use (Kumar et al., 2017; Sharma et al., 

2016). Especially, according to global urban ambient air quality 

database (WHO, 2016), there are 14 of world's 20 most polluted 

cities in India in terms of PM2.5 levels. Rapid urbanization and 

population growth especially in the last decade have adversely 

affected urban climate and air quality of India (Saikawa et al., 

2017; Sahu et al., 2017). Shi et al. (2017) founded that India 

consistently showed the largest PM2.5 concentrations during 

1999–2014, which were significantly higher than for any other 

countries. Han et al. (2015) analyzed PM2.5 concentration varies 

for different land covers in China based on a single-year LC 

data. Li et al. (2018) explored the urban PM2.5 pollution 

situation for 2014–2016 and investigated the impact of 

landscape factors on urban PM2.5 in China at the city level. To 

date, many studies about the impact of changes in land use and 

land cover on air quality have been undertaken in China. 

However, only a few studies have investigated PM2.5 

concentration variation different land covers with long-term 

trends and spatial variations in India, where LUCC are also 

rapidly evolving in the process of urbanization. It is noted that 

these studies have limited applicability with regard to India, as 

a result of the large differences between India and the other 

study areas.  

 

Therefore, based on longer-term LC products, we aimed at 

quantifying differences compared (PM2.5) concentrations in 659 

districts of Indian urban and the surrounding regions during 

1998–2015 in this study. Additionally, we explored how PM2.5 
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concentration varies for different land covers using Mann-

Kendall (MK) test and Sen’s trend analysis approach. 

 

2. MATERIALS AND METHODS 

2.1 Land Cover  

European space agency (ESA) released a consistent multi-

temporal global land cover maps at 300 m spatial resolution 

covering 1992 to 2015 (https://www.esa-landcover-

cci.org/?q=node/164), and the detailed calculation process can 

refer to the Plummer et al. (2017). In this study, it was 

employed to analyze the difference of PM2.5 in the urban area 

(urban area LC class) and surrounding regions, and the original 

LC classes were further reclassified into 10 major LC types: 

agriculture (L01), forest (L02), mosaic herbaceous cover (L03), 

shrubland (L04), grassland (L05), sparse vegetation (L06), 

urban area (L07), bare area (L08), water (L09), and permanent 

snow and ice (L10). 

 

2.2 PM2.5 Concentration Differences 

For evaluating the long-term PM2.5 variabilities across India, 

this study used a satellite-based gridded PM2.5 dataset obtained 

from the Dalhousie University Atmospheric Composition 

Analysis Group Work (available at 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140). This 

dataset is compiled using a integrated  geophysical-statistical 

method, which provides a 0.01° × 0.01° grid at global scale for 

each year from 1998 to 2016 (van Donkelaar et al., 2016). The 

accuracy of this dataset is assessed by world-wide ground-

measured PM2.5 records in 2010, and the result presents a 

consistent agreement with ground-measured PM2.5, with an out-

of-sample cross-validated R2 value of 0.81 (N = 1855). The 

results indicates that the dataset can be utilized for large-scale 

PM2.5 related studies. In this research, we applied the dataset 

from 1998 to 2015 to analyze the long-term spatial variation of 

PM2.5 concentration in different LC of India. Additionally, the 

annual air quality standard of World Health Organization's 

(WHO) was used in this research (WHO, 2006). The standard 

has four levels: the air quality guideline (AQG; 10 μg/m3), and 

three interim targets (IT-1: 35 μg/m3; IT-2: 25 μg/m3; IT-3: 15 

μg/m3). Especially, 40 μg/m3 is also set as a reference value to 

evaluate the serious degree of local air pollution according to 

National Ambient Air Quality Annual Standards of India 

(NAAQAS).  

 

To explore the temporal and spatial distribution characteristics 

of PM2.5 concentrations between urban and the surrounding 

regions, the PM2.5 concentration differences approach was 

employed in this study (Han et al., 2014). Firstly, average PM2.5 

concentrations were calculated at the municipal level using the 

PM2.5 concentration dataset. The PM2.5 concentration in the 

urban/nonurban areas (UrbanPM2.5/NonUrbanPM2.5) was then 

calculated based on the ESA LC dataset. The differences in 

PM2.5 concentration (DPM2.5) between UrbanPM2.5 and Non 

UrbanPM2.5 were obtained with the following equation: 

 

                
2.5PM 2.5 2.5=UrbanPM NonUrbanPMD                (1) 

 

2.3 Trend Analysis Approach 

Mann-Kendall (MK) trend test is a nonparametric test 

method (Mann., 1945; Kendall., 1948). This method does not 

require a normal distribution of data, and is an efficient 

statistical tool for analyzing changes within long-term trends of 

air pollutant concentration data (Faridi et al., 2018; Bigi et al., 

2014). The null hypothesis H0 is that the data series xk (k=1, 2, 

3..., n) are independent from one another and has the same 

distribution, and the alternative hypothesis H1 is that there is a 

monotonic trend in the data series. The MK trend test is 

calculated as following:  
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where  xj is the sequential data value 

 n is the size of the dataset 

 sgn is calculated as follows: 
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According to Mann (1945) and Kendall (1948), when n≥8, the 

test statistics S is approximately normally distributed with the 

mean and variance as follows: 
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where  tm is the number of extent m 

 

The standardized test statistics Z is calculated using the 

following formula: 
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|Zα|=1.65, 1.96, and 2.58, which correspond to the critical 

values at the significance level P=0.1, 0.05, and 0.01, 

respectively. If |Z|>|Zα|, the null hypothesis H0 is rejected. In 

our study, annual averages of PM2.5 concentrations were used 

for the long-term trend analysis. However, MK test indicates 

only the direction of increasing and decreasing air pollutants. 

To analyze the magnitude of trends, we used Sen's slope 

estimator, which is the robust estimator for the amplitude of 

trend slopes as proposed by Sen (1968): 

 

               ( )
j ix x

Slope Median
j i





   (1 )i j n              (7) 

 

where  slope is the monotonic increase or decrease rate, or 

the linear slope, of the entire data series xk (k=1, 2, 3, ..., n) or 

any segmentation xw (w=I, i+1, i+2, ..., j). 

 

The PM2.5 trend was calculated as the significant (P<0.05 in 

this study) slope of the Mann-Kendall (MK) trend test at each 

pixel’s time series. Positive/negative trends were then defined 

as trends larger than zero/smaller than zero, respectively. 
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Median denotes the function to take the median value, and 

conductes a significance test on the result of the Sen’s trend 

analysis using the MK approach (Wang et al., 2018).  

 

3. RESULTS AND DISCUSSION  

3.1 Spatial Pattern of Average PM2.5 Concentration 

Figure 1. Spatial distribution of average PM2.5 in India during 

1998-2015 

 

The annual mean of PM2.5 from 1998 to 2015 in India presented 

an obvious three-stage stepped-down spatial distribution from 

the Ganges plain to north and south of India. Spatial distribution 

of each stage was distinctly different (Figure 1). High 

concentration of PM2.5 was found in Ganges plain, which 

including the capital city—New Deihi. There are fertile land 

and excellent geographical conditions in the Ganges plain, 

which makes many cities with large population located, such as 

New Delhi, Kanpur and Lucknow. The air pollution caused by 

traffic exhaust is also one of the pollution sources that can not 

be ignored (Sharma et al., 2016), which brought great pressure 

to the local atmospheric environmental quality. In addition, 

Punjab and Haryana are India's principal agricultural areas, with 

a large proportion of farming and large-scale straw burning 

emissions. However, due to the Himalayas blocking, the region 

is prone to inversion and the overall atmospheric environment is 

relatively stable (Saikawa et al., 2019). To summarise, a large 

number of anthropogenic emissions of atmospheric pollutants, 

coupled with unfavorable conditions for the spread of 

atmospheric pollutants and the transmission of atmospheric 

pollutants from adjacent areas (e.g., Punjab, Haryana), which 

led to the Ganges plain becoming the most polluted area in 

India. 

 

 

 

 

                                  

Figure 2. PM2.5 annual mean change (a) and the number of districts different levels of annual mean PM2.5 (b) 

 

Figure 2a showed the annual mean PM2.5 concentration change 

in India during 1998-2015. Overall, there was an upward trend 

of annual mean PM2.5 concentration with R2=0.79(P<0.001) in 

India. However, the change characteristics were variously in 

different stages. From 1998 to 2001, the average annual value 

of PM2.5 showed a rapid upward trend (the average annual 

average of PM2.5 in 1999-2000 was basically same), and 

reached a peak in 2001. In 2002, the annual mean PM2.5 showed 

a brief and significant decline, but then it rebounded and 

continued to rise, and reached the highest value in 2008 since 

1998. After that, the annual mean PM2.5 experienced the longest 

period of continuous decline in the annual mean PM2.5 in India 

during 1998-2015, while it dropped to valley value of 32μg/m3 

in 2012. After 2012, the annual mean PM2.5 rose sharply and it 

reached nearly 40μg/m3 in 2015, which reflected the air quality 

of India suffering a sharp deterioration tendency during 2012-

2015. According to the number of districts in different annual 

mean PM2.5 levels (Figure 2b), there are 9 districts with 

10μg/m3 meeting the air quality guidelines set by the World 

Health Organization. The number of districts reaching WHO 

IT-3 (15μg/m3), IT-2 (25μg/m3) and IT-1 (35μg/m3) is 12, 177 

and 208, 1.82%, 26.86% and 31.56% of which accounts for the 

total districts respectively. Especially, 38.39% of the 659 

districts with an annual average PM2.5 were higher than 

40μg/m3, indicating that more than one-third of distric had 

experienced serious air pollution. In addition, there were 14 
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districts with an annual mean PM2.5 more than 80μg/m3, which 

showed that the air quality of those regions were extremely 

severe. 

 

Figure 3. Proportion of PM2.5 at each level in different LC types 

 

In order to further explore the characteristics of PM2.5 in 

different LC types in India, average PM2.5 from 1998 to 2015 in 

different LC types were counted respectively (Figure 3). 

Average PM2.5 were above 40μg/m3 in the areas where the urban 

area (L07), farmland (L01) and water (L09) were the three 

largest types. The atmospheric pollutants caused by the mass 

population living in the urban area and the industrial pollutants 

caused by industrial production made the air pollution in L07 

very severe. Different from PM2.5 in L07 and L09 types which 

occupied a larger proportion in NAAQAS level, annual average 

PM2.5 in shrub (L04), herbaceous cover (L03), woodland (L02) 

and sparse vegetation (L06) accounted for IT-1, IT-2 in most 

areas, indicating that air quality in these regions was relatively 

good. However, the air quality in these areas had not yet been 

optimistic and needed further attention. Grassland (L05), bare 

(L08) and permanent ice and snow (L10), where there was no 

obvious emission, were less affected by human activities. The 

PM2.5 in these regions was below 10μg/m3 (AQG), and 

indicating that the air quality was the good.  

 

3.2 Trend of PM2.5 Concentration, 1998-2015 

 

Figure 4. Districts of DPM2.5 in India during 1998-2015 

 

Figure 4 showed statistics of DPM2.5 in 659 districts in India. The 

number of districts with DPM2.5>0 showed a significant 

increasing trend, especially the number of districts with DPM2.5 

between 0 and 10. However, the amount of districts with DPM2.5 

<0μg/m3 decreased from 438 in 1998 to 276 in 2015, indicating 

that the air pollution in Indian districts was getting worse. The 

amount of districts with DPM2.5 between 10 to 20 μg/m3 was 

more than doubled from 6 in 1998 to 14 in 2015. In addition, 

districts with DPM2.5>30μg/m3 emerged continuously, especially 

in 2003, it overpassed 40μg/m3, indicating the air quality 

situation in urban areas had further deteriorated. 

 

 
Figure 5. Significant trends of PM2.5 using MK test and Sen’s 

slope in India during 1998 to 2015 

 

The area with strong significant positive trends was obtained 

mainly in the Ganges plain, northern Chhattisgarh and 

Jharkhand. In particular, PM2.5 in Patnabang and its adjacent 

West Bengal region located in the southeastern part of the 

Ganges River region was increasing at a rate of 1.2μg/m3 or 

more. While the annual growth trend of PM2.5 in most of 

southern India (including Tamil Nadu, Kerala, Andhra Pradesh, 

Goa and Karnataka), and western India (including Gujarat and 

western Rajasthan) were less than 0.9μg/m3. There was no 

significant change of PM2.5 in the western Thar Desert and the 

Himalayas area in the northwest of India, and the PM2.5 even 

had a significant downward trend in the partial areas of 

Himalayas. The main LC types in these areas were permanent 

ice and snow and water, which was likely due to the low 

intensity of human activities and the low emissions of air 

pollutants.  
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Figure 6. Significant trends of PM2.5 in different LC types 

during 1998-2015 

 

We can see from the Figure 6 that except for bare area and 

permanent ice and snow LC types, the other types of PM2.5 had 

a more proportion significant positive trend than others, 

indicating that PM2.5 of these types was mainly increasing. The 

average increase trend of farmland type (0.83μg/m3) was the 

largest in all LC types, followed by the urban area (0.82μg/m3). 

The average annual growth rate of PM2.5 in forest and water LC 

types is stable, but the proportion of significant positive trends 

in water is obviously higher than that in forest, indicating that 

the water is suffering from more serious air pollution than forest.  

 

4. CONCLUSIONS 

In this study, we utilized PM2.5 and LC products from remote 

sensing first analysed the differences in PM2.5 concentrations 

between urban and surrounding areas in India, and further 

investigated the response of PM2.5 to LC using MK test and 

Sen’s slope methods during 1998 to 2015. The following 

conclusions can be drawed: 

1) The number of districts with DPM2.5>0, especially those with 

between 0 and 10, increased continuously during 1998-2015. 

The number of districts with DPM2.5>0 predominated since 2010. 

2) The most serious PM2.5 pollution areas were located in the 

northern India, especially Ganges plain. The annual average 

PM2.5 showed an upward trend from 1998 to 2015. Areas of 

annual mean PM2.5 higher than NAAQAS were mainly 

distributed in farmland and urban areas, which accounted for 

58% of India’s area. However, there was only 10% of areas 

with PM2.5<10ug/m3, and these areas were mainly found in the 

permanent ice and snow (L10) in northwestern India. 

3) 90% of the cropland and 88% of the urban area were found 

significant positive trends and the average trends of PM2.5 in 

these regions were 0.83ug/m3 and 0.82ug/m3 respectively, 

which were higher than those other land covers. 
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