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ABSTRACT:

Urban thermal environment (UTE), as a important parameter in urban ecosystem, strongly and directly linking to urban development
and human health. In recently decades, rapid urbanization and population development resulted in serious urban thermal environment
problem particularly the urban heat island(UHI) phenomenon. Today, it’s urgent to control and curb urban thermal environment
based on the UTE’s spatial-temporal characteristics, in addition, the seasonality of UTE lacked in-depth understanding, which is also
a significant question in UTE management, a better understanding the UTE will help human improve governing efficiency and effect.
Thus, in our study, we investigated the spatial-seasonal variation and distribution of UTE by statistic analysis, spatial index analysis
and landscape metric analysis. We found that: there has a significant spatial and temporal differences on UTE under different seasons,
the UHI intensity and mean LST showing a significant difference and stability, additionally, “heat island” of urban showing a cluster
trend in urban space particularly in high UHI intensity seasons. These results extend our understanding on the spatial-seasonal
variation, heterogeneity and distribution of UTE and which can provide very significant reference and information for urban

decision-makers to govern UTE.

1. INTRODUCTION

In the 21st century, urbanization has already became a
worldwide tendency with an unprecedented speed over the past
decades. More than 55% world’s population living in the urban
area, which will more than 68% in 2025 reported by the 2018
Revision of World Urbanization Prospects(Chakraborty and Lee,
2019; United Nations, 2018; Yu et al., 2019; Zhou et al., 2014).
Urban area, as the crucial living space of human being, will
occupy an more important position of word, particularly in the
future. Increasing population not only promotes the social-
economic development, but also causes negative effect on the
urban system, such as the rapid urban expansion, air pollution,
traffic jam, surface temperature increasing, biodiversity
reduction, energy consumption and so on(Bhati and Mohan,
2015; Zhou et al., 2018). One of the most serious problems is
the urban heat island(UHI) phenomenon, which influences the
urban thermal environment seriously(Deilami et al., 2018). This
phenomenon also caused by the urban development and
population increasing, because the urban development meant
the change of urban physical properties in land surface, much
natural and semi-natural land surface transformed into
impervious surface(Yu et al., 2019). These changes can induce
the temperature of urban region were much higher than
suburban region and form the UHI phenomenon. According to
previous researches, UHI phenomenon can deteriorate
ecological environment and influence human health(Kuang et
al., 2018). The sustainable urban development need control and
optimize the urban thermal environment for constructing a
better living space.

Urban land surface temperature(LST), as one of the most
important parameters for analyzing urban thermal environment,
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which is the radiative skin temperature of the urban
surface(Bhati and Mohan, 2015; Kuang et al., 2018; Liu and
Weng, 2008). Researchers usually utilized the LST to describe
and analyze the urban thermal distribution especially the UHI
phenomenon, and many researches indicated that LST is
significant influenced by urbanization, land cover type and
global climate, which all can change the LST(Madanian et al.,
2018; Zhu et al., 2018). UTE, as a indispensable composition of
urban ecosystem, closely related with human being, extreme
UTE badly destroys urban ecosystem, such as UHI, which
accelerate the urban LST increasing and deteriorate UTE, so it
can be used to reflect and embody UTE. In order to improve
UTE and mitigate UHI intensity, first and foremost, we should
better understand the spatial distribution and variation’s
characteristics of the UTE, particularly the spatial and seasonal
variation, which also can provide helpful information for other
scientific research.

Traditionally, monitoring and measuring UTE usually depend
on in-situ measurement or data collection from meteorological
stations, which cost a lot and are usually difficult to gain(Zhu et
al., 2018). In recent decades, thermal infrared remote sensing
imagery, as a rapid, low cost and large-scale observation
technology for global thermal environment, have made a great
progress under vast research effort, and widely used in thermal
environment research. The types of infrared sensors increased
rapidly with a higher spatial resolution, shorter revisit time and
larger observational range, which provide new chance for
researchers to further study the thermal environment from
regional scale to global scale. The thermal infrared data sources
mainly including Landsat Thematic Mapper (TM)/Enhanced
Thematic Mapper (ETM+)/Thermal Infrared Sensor (TRIS),
Terra/Aqua Moderate Resolution Imaging Spectroradiometer

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W9-95-2019 | © Authors 2019. CC BY 4.0 License. 95



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W9, 2019
ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment (RSAE), 25-27 October 2019, Nanjing, China

(MODIS), ASTER and others, which are the most widely-used
to study thermal environment. MODIS was commonly utilized
in large regional or global study with a coarse spatial resolution,
so MODIS is not appropriate to explore UTE. Landsat archive
has a higher spatial resolution(60m-120m), high data quality
and cost-effective to obtain(Zhou et al., 2018). In our study area
and time periods, Landsat 8 TRIS data is available and cloud-
free, therefore, we utilized Landsat 8 TRIS data in our study.

According to previous studies, UTE variation and distribution
closely related to land use types, urban structure, urban surface
feature materials even the air speed and cloud cover(Zullo et al.,
2019). The influence factors of UTE have been extensively
studied in recently years, especially the land covers, such as
build-up area, water and vegetable, which were demonstrated
closely related with UTE(Guo et al., 2019; Keeratikasikorn and
Bonafoni, 2018; Madanian et al., 2018). However, the study of
spatial distribution, heterogeneity and pattern of urban thermal
environment was less researched than the former, which also is
a significant research topic for sustainability development of
urban environment. Chaiyapon et al. (Keeratikasikorn and
Bonafoni, 2018) utilized main statistics to describe the urban
thermal environment, such as mean, standard deviation,
maximum and minimum LST value; Weng at al.(Weng et al.,
2018) presented a innovative method by combining the
Shannon’s entropy and Pearson chi-square statistic to explore
UTE in summer. Sun et al.(Sun et al., 2019) quantified the
diurnal and seasonal of UTE using of 245 China cities to
display the characteristics of UHI. Sabiha et al. (Sultana and
Satyanarayana, 2018) combined land types and LST pattern to
study the UTE in winter; Liu at al.(Liu and Weng, 2008)
explored the seasonal variation of relationship between
landscape pattern and LST; Peng et al. (Peng et al., 2018)
compared the seasonal factors which result in the spatial
distribution of LST. Victoria et al.(Miles and Esau, 2017)
utilized MODIS LST production to explore the spatial and
seasonal characteristics of UHI phenomenon. Qian et al.(Qian et
al., 2018) utilized the maximum difference and standard
deviation of temperature to explore the urban thermal
heterogeneity through in-situ measurement. Most of previous
studies usually ignored the UTE’s seasonality, and paid more
attention on summer, additionally, the spatial heterogeneity
wasn’t be well studied. There also have a lot of researches paid
attention on the LST and it’s effect factors, such as impervious
surface area, vegetation area or water body, and want to explore
the cooling effect of different surface features to decrease urban
heat island or high LST distribution, which have made great
progress(Firoozy Nejad and Zoratipour, 2019; He et al., 2019;
Sherafati et al., 2018). In addition, most previous researches
need to be combined with the actual situation of UTE,
particularly gaining insight into it’s detailed spatial information
of different time periods, for mitigating the terrible problem on
UTE. Therefore, more researches need to focus on the UTE
itself, such as the heterogeneity of UTE, UHI characteristics on
different seasons and sub-regions, which also have huge
significance to optimize spatial thermal environment. On the
other hand, the “heat island” region of urban area, which have
the higher LST of all the urban region, have not been focused
enough.

In this article, we selected a whole urban ecosystem, which take
the urban nuclei as center covering complete urban scope, as
our study area. Different seasons cloud-free Landsat 8 imagery
were utilized to explore and describe the special-seasonal
variation and distribution of UTE by analyzing UHI intensity,
urban normalized LST, seasonal difference of UTE. The
heterogeneity of UTE can be quantified by normalized LST,

mean LST standard deviation(SD) and LST’s amplitude
variation. Meanwhile, we analyzed the spatial distribution of
“heat island  region using landscape metrics index to detailed
describe the UTE’s variation and distribution pattern. In general,
our study provided a better detailed understanding of UTE,
particularly the spatial and seasonal variation under a whole
urban system, to provide helpful information for decision-
makers for making efficient and accuracy policy on UTE
management.

2. MATERIALS AND METHODS
2.1 Study Area

The city of Nanjing, Jiangsu province, China was selected as
our main study area(longitude: 118<22-119<14E; latitude:
3114-32<37N), which situated in east of China, encompassing
an area of 6587.02 km?(see Figure 1). Nanjing is the capital city
of Jiangsu, and regarded as the significant central city of the
eastern coastal economic belt and the Yangtze River economic
belt. The development of economy and population in Nanjing
have increased rapidly during past decades, The population has
increased almost 66%, from 5.01 million in 1990 to 8.33 million
in 2017. Nanjing’s gross domestic product (GDP) has increased
almost dozens of times, from approximately 16.09 billion in
1990 to more than 1,171.51 billion in 2017. As for the climate,
Nanjing has a subtropical monsoon climate which the annual
average air temperature is about 15.4°C, the annual average
rainfall can reach 1157mm. In recent decades, The expansion of
built-up area in Nanjing has increased sharply(from 515 km? in
2000 to 1398 km? in 2017) with rapid social and economic
development, resulting in higher temperature in main urban area
than suburbs. To comprehensive explore the UTE special-
seasonal distribution and avoid the limitation of administrative
boundaries, our study is of 5026.53 km? circle area covering all
of the central downtown and most of the suburb, whose central
point is the Nanjing’s central area Xinjiekou business district
(longitude: 118<46'43"E; latitude: 3202'38"N), and with the
radius of 40km. The circular area was selected for two reasons,
first, the most traditional study were limited by the
administrative boundary, we want to research the total urban
ecosystem and the whole thermal environment, which have
more significance for guiding the urban planning. Second, the
circular area is convenient for statistic and comparison in our
study, so we divide our study into eight sub-regions for further
analyzing(see in Figurel(b)).

2.2 Data

2.2.1 Landsat 8 TIRS images: Landsat 8 TIRS instrument has
two thermal infrared bands at 100m spatial resolution(Band 10
and Band11), which was considered as the one of the best
thermal infrared sensors, can provide opportunity for
monitoring the Land surface temperature, noted that the TRIS
data have been resampled to 30m by the USGS. Landsat 8 data
can be download freely from the United States Geological
Survey(USGS) website(https://earthexplorer.usgs.gov/). The
TIRS data were used for retrieving LST. Four high-quality
(cloud-free) scenes of Landsat 8 images(path/row 120/38) on 28
March, 2016, 21 July, 2017, 7 October 2017, 9, December,
2016 were chose for representing the four seasons of the year,
the reason we chose from two years because there have no
complete high-quality images of different seasons in the same
year.

2.2.2 Other auxiliary data: The MODIS/Terra LST Daily L3
Global 1 km SIN Grid data (MOD11A1) and historical
meteorological data was utilized to validate the LST result
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which retrieve from the Landsat 8 TRIS data(Darge et al., 2019).
MOD11A1 LST data are retrieved by the split-window
algorithm, which can be downloaded freely from
https://wist.echo.nasa.gov/api/. The historical meteorological

HE20°0"E

data was collected from the Urban weather station including the
temperature data on a specified date, such as maximum
temperature, minimum temperature, wind direction and so on.
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Figure 1. Map of study area of Nanjing, China.(a) Location of study area in China; (b) Division of study area; (c) Landsat 8 OLI false

color composition image of study area(RGB=543)

2.3 Data Pre-processing

Before conducting temperature retrieval, Landsat TRIS data
must be processed for reducing the errors due to instrumental
variations in data acquisition, image noise, and misregistration,
which will convert from the original digital number(DN) value
to radiance (W/(m2. sr. pm))(Darge et al., 2019). Atmosphere
correction of the Landsat 8 data, using FLAASH algorithm, was
conducted on the ENVI 5.3 platform. After finishing the pre-
process of Landsat 8 image data, all of the spatial data were
converted to Lambert Azimuthal Equal Area Projection, with
reference to the WGS84 datum. The study area boundary was
used to clip the remote sensing data.

2.4 LST Retrieval and Validation

The LST of study area retrieved, using Landsat 8 Band10, based
on the Radiative Transfer Equation (RTE) algorithm(Garc E-
Santos et al., 2018; Voogt and Oke, 2003). The advantage of
this algorithm is not only it needs less amount of parameters to
retrieve LST comparing with other algorithm, such as mono-
window algorithm and split-window algorithm, but also it was
demonstrated that it has a high LST retrieve accuracy using
Band10 of Landsat 8 than split window algorithm and single
channel method(Darge et al., 2019; Keeratikasikorn and
Bonafoni, 2018; Shirani-bidabadi et al., 2019; Xiaolei Yu,
2014). In the status of data pre-processing, The landsat 8
thermal band 10 have been converted to at-sensor radiance at
the top-of-atmosphere (L), next, Planck’s radiance function
was utilized to calculating brightness temperature. The LST can
be expressed in equation as follows:

KZ
= K1
In(—+1
G+D

@

Where T = At-sensor brightness temperature(in Kelvin),
K, ,K,=77489 W m?2 sr! um™ and 1321.08 K,
respectively(Guo et al., 2019).

Ly=[eB(Ty) + (1 —€)L 4]+ L1 @)

Where L, = Radiance recorded of channel 10

& = surface emissivity

T = Atmospheric transmissivity at thermal infrared band

B(Ty) = Radiation brightness of the blackbody

Ly, L' =Downwelling, upwelling atmospheric radiance
It’s noted that & was calculated through the Normalized
Difference Vegetation Index (NDVI) threshold method(Thanh
Hoan et al., 2018; Xiaolei Yu, 2014), which is widely used in
land surface emissivity calculating, respectively(Guo et al.,
2019; Xiaolei Yu, 2014). Additionally, the B(Ty) is computed
based on the Plank’s function, which can be expressed in the
following Equation.3.

Ly—LT-t(1-¢)Li]

B(Ty) =+ @3)

TE
After finishing the LST retrieval, we need to validate the result
of the retrieval, as we know, it’s hard to gain vast true ground
surface measurement temperature, because of the unavailability
and uncertainty with the concurrent time and position, so we
learn from some researches, such as Yosef et al. (2019), Qin et
al.(2011) and Srivastava et al.(2009). They all found that the
LST retrieved from the Landsat 7 ETM+ and Landsat 8 TRIS
have a difference about 2<C with the MODIS LST
production(MOD11A1), based on this fact, we can validate our
retrieved Landsat 8 LST result rapidly and accurately, and if the
difference between the two less than 2<C, the accuracy of LST
retrieval is acceptable for further analysis(Darge et al., 2019). In
addition, we also compared our retrieval results with the
historical meteorological data, and calculated the correlation
between them for further validation.

2.5 LST Normalization and Calculation of UHI Intensity

The standardization of LST can display the spatial distribution
and pattern thermal environment in different time periods,
because the LST comparison between different seasons is hard
due to different climate background(Weng et al., 2018), the
different absolute temperature in different season differ widely,
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but the distribution pattern of LST stay consistent, which will
facilitate our analysis. On the other hands, the comparison of
normalized LST in different seasons can represent the level of
LST under the whole UTE. The standard LST can be calculated
using the following Equation.4.

LST;—LST
LSTn — i min
LSTmax—LSTmin

(4)
Where LST, is the normalized LST, LST; represents the
individual LST of pixel i, LST,,;n, and LSTy,q, IS the minimum
and maximum temperature of our study area.

After normalizing the LST of each time periods, we need to
classify the standard LST data to conduct further study.
According the mean temperature and standard deviation of
every standard LST results, we divided each results into five
levels: very low temperature zone(T < Tpnean — 1.5 * std), low
temperature  area( Tpean — 1.5 * std < T < Tean — Std ),
medium temperature area( Tyeqn — Std < T < Thean + Std ),
high temperature area(Tyean + Std < T < Thean + 1.5 * std),
very high temperature area(T > Typean + 1.5 * std).

Based on the classification of temperature of study area, we can
describe the UTE further, as we know, UHI is a common
phenomenon in many metropolis including Nanjing, which
dramatically change the UTE. Description of UHI intensity can
embody and reflect the UTE more quantitatively and
comparably during different time periods and regions. So the
urban heat island ratio index, suggested by Xiong et al.(2012),
to quantify the UHI intensity, which was shown in the
Equation.5.

SUHI intensity = — S, W;P; ®)

Where n is the number of temperature level which more than
the medium temperature level; W; represents the weight of
temperature level i, and P; is the percentage of temperature level
i

2.6 Spatial-seasonal Analysis of UTE

2.6.1 The heterogeneity and variation analysis of UTE: For
exploring the spatial variation and heterogeneity of LST in
different zones and time periods, we not only analyzed the
whole region, but also divided our study area into eight sub-
areas based on the shape feature of our study area, which can
represent different situation at directions. The heterogeneity of
the UTE was quantified by standard deviation(SD) and the
different between the upper and lower quartiles(DULQ), the
reason we used the DULQ because there have some abnormal
LST value(extreme high LST, such as the steel mill, power
station or other heavy industry factories ), so the upper and
lower quartiles are more objective to quantify the global
heterogeneity of LST. The mean temperature and the standard
deviation of each zones were also counted for analyzing the
detailed variation and the zone’s differences. The UHI intensity
of each seasons and each sub-regions were researched based on
different directions. The destination of all the steps above is to
explore the spatial distribution and distribution heterogeneity of
UTE.

2.6.2 Spatial-distribution pattern of urban thermal region:
In the UTE, the spatial distribution pattern of which need to be
further explored, particularly the extreme high temperature
region( T > Tpean + Std, cotaining level 4 and level 5 ),

which is the “ heat island “ in our urban thermal environment,
and these areas have the most serious impact on the living
environment of human being, plants and animals than any other
regions. Exploring the special distribution and variation of
urban extreme heated regions can provide meaningful
information for UTE management. The structure of heat region
under different seasons were analyzed utilizing landscape
metrics including patch density (PD), Patch number(PN),
Aggregation index(Al), Mean patch size(MPS), Total area(TA)
and Patch cohesion index(PCI) (Table 1). All of the landscape
metrics were computed in Fragstats 4.2 software, and
conducting analysis based on these metrics during different
seasons.

Landscape Metrics Description Unit Range
Patch density (PD) I”g;zg?er of patch per square | ., 0
Patch number(PN) ;Zel a;oégl:puember of patches in count >0

ﬁgg;i%i:?n shgﬁ?:pgtis;ance to the nearest None 0-100
’\s/:gz?,\ﬁgtg; Mean size of the total patch km? >0
Total area(TA) ;2:3 stg;;:e area of patch in the K >0
"ty | Dty | wore | o0

Table 1. Descriptions of selected landscape indexes

3.RESULTS AND DISCUSSION
3.1 Land Surface Temperature Retrieval and Validation

The LST of our study area was derived from Landsat 8 TRIS
data by employing RTE method in different seasons were
shown in the Figure 2, we can find that the relatively higher
temperature usually concentrated in the urban area, and the
suburban area shows a lower temperature than the urban region,
which was called the urban heat island phenomenon. The spatial
distribution of UTE showed quite different distribution pattern
between four seasons.

In order to validate the LST retrieval results, we compared them
with the MODIS LST production(MOD11A1) and historical
temperature data of Nanjing. We found that the difference of the
average LST of our study area, retrieved from the Landsat 8
TRIS data, and the average LST from MOD11A1 production
are within 2<C. In addition, the R? (correlation between
observed value and predicted value) of average retrieval LST
result from the TRIS data and historical temperature is 0.9693,
which represents a acceptable retrieval accuracy. Based on
verification above, the LST retrieval map satisfied the needs of
our further study.

3.2 Spatial-seasonal
Intensity Calculation

Heterogeneity Analysis and UHI

After retrieving the LST of different seasons, we calculated the
standard deviation(SD) and difference between upper and lower
quartiles(DULQ) under different seasons, which is shown in the
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Figure 3. In summer, all of the two indexes is the largest, which which need further study. Overall, the heterogeneity varied
meant summer has the largest heterogeneity, and winter has the obviously with the seasons.
lowest. The spring and autumn have the similar heterogeneity,
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Figure 2. Land surface temperature of different seasons

In order to further detailed analyze the heterogeneity of our

study, we decomposed the study area, compared the average 454 ; R
LST of different directions and the SD under different regions, ' —— DULQ
as shown in the Figure 4, according to previous findings, UHI 404
intensity is closed to land cover, in our study, there have large 35

difference of land cover composition and urban zoning between
different directions, which caused different LST distribution. 3.0 4

The standard deviation of LST can represent the zonal LST’s g

change level, which is a essential element to describe the UTE. “:g 25

Additionally, the standard deviation of LST during different 2.29

seasons shows a different trend, especially in summer, the SD of 2.0

LST is extremely higher than any other seasons of directions.

As for the different directions, the NE and SW directions have 1.5

the higher SD of LST during all seasons, the SE and W o 1.03
directions have the lower LST’s SD, especially in summer, ’ 0.95
autumn and winter. The overall level of SD value was linking to 05 : : ; : :

the seasonal change, but the difference in directions may caused spring summer autumn winter
by the regional differences, such as the number of land cover Seasons

type, the composition of land cover or human activity. As for :

the mean LST, the directions of SE, S, SW have the high mean Figure 3. Seasonal LST’s standard deviation(SD) and
LST, which also have high UHI intensity. difference between upper and lower quartiles(DULQ)
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Figure 4. Distribution of mean LST and the variation of
LST’s standard deviation

Base on the retrieval LST results, we reclassified these LST
map into four temperature levels, and calculated the urban heat
island index, as shown in the Table 2, from which we can
conclude that the intensity of urban heat island in summer is the
highest, and in other seasons, this phenomenon has slowed
down.
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Table 2. Urban heat island index under different seasons

4.5 Spatial distribution and pattern of urban heated region

Urban heated region, which refer to the high temperature
area( T > Tppeqn + 1.5 * std ) and represent the “heat island” of
urban heat island phenomenon in UTE, play a crucial role in the
UTE. In our study, we used six landscape metrics to describe
the spatial distribution and pattern of urban heated region, the
following Figure 5 shows the five landscape metrics of urban
heat region of different seasons, we can find that summer has
the largest heated region area, however, the number of which is
the least than other seasons. Additionally, winter’s TA is the
least and MPS is smallest of all the seasons, which contain
many fragmentized heated regions in the study area, in other
words, the area of heated regions in winter become less and
which distribute more dispersedly than other seasons. The PCI
and Al indicate that the heated regions of our study area tend to
be concentrated and highly connected in summer, and
weakening in other seasons especially in winter. The spatial
clustering and increase of urban heat regions result in the
variation of UTE, which will aggregate the UHI intensity
especially in summer, so this spatial distribution of heated
regions need be focused on based on spatial-seasonal
characteristics.
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Figure 5. Landscape metrics of urban heat regions, (a) TA; (b) PD;(c) NP; (d) MPS; (e) PCI; (d) Al
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5. CONCLUSION

In this paper, we utilized the Landsat 8 TRIS imagery to explore
the spatial-seasonal variation, heterogeneity and distribution of
UTE by analyzing UHI intensity, comparing seasonal
normalized LST, and further described the spatial distribution
and pattern of urban heated region through landscape metrics
index. The relevant conclusions of our study are as follows:

(1) The UHI intensity of Nanjing reaches the peak in summer,
which meant the city has a worst thermal environment for
human being, plants and animals, and with a high spatial
heterogeneity, additionally, different districts have various
thermal environment. So policymakers need to pay close
attention to the summer, and different strategies need to be
implemented due to the difference between each regions or
directions. The heterogeneity of UTE provide a meaningful
information for urban environment management, where the
decreasing of heterogeneity can become a future direction of
research.

(2) Our results also revealed that urban heated region’s spatial
distribution pattern have a seasonal variations. The structure of
UTE changes with seasons, the clustering effect is obvious in
high-LST seasons, and decreased in low-LST seasons, which
meant that high LST usually together with high spatial
aggregation of heated regions. This phenomenon was interesting
and need pad more attention on to explore the factors. So based
on our results, the distribution of urban “heat island” is another
perspective to understand the UTE, which should be referenced
to design urban development planning. we think there have a
significant idea and method to mitigate bad UTE, which is
breaking the spatial aggregation and cut off the decreasing the
spatial connectivity, and try to decrease the area of heated
region by utilizing some cooling methods. Overall, the heated
region in our city, which can do harm to our living environment,
should be controlled and decreased by urban administrators, the
distribution regularity we found need to be referenced.

(3) The results of our study expanded our understanding of the
variation of UTE among different seasons, which can be
referenced to formulate specific measures to solve the UHI
phenomenon. Summer needs to be focused first, and in other
seasons, the UTE also need to optimize further. The regional
urban planning, which was made differ from each area, need
pay more effort. The detailed urban zonal planning based on the
current situation of thermal environment should be enacted in
the future.
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