
 

 

EVALUATING THE SPATIAL-SEASONAL VARIATION, HETEROGENEITY AND 

DISTRIBUTION OF URBAN THERMAL ENVIRONMENT: CASE STUDY OF NANJING, 

CHINA 

 

Xiang Kang 1, Jianjun Pan 2, * 

 
1 College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China – Kangxiang9523@163.com 

2 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China – jpan@njau.edu.cn  

 

Commission III, WG III/8 

 

 

KEY WORDS: Urban Thermal Environment, Urban Heat Island, Landsat 8, Spatial-seasonal Variation 

 

 

ABSTRACT: 

 

Urban thermal environment (UTE), as a important parameter in urban ecosystem, strongly and directly linking to urban development 

and human health. In recently decades, rapid urbanization and population development resulted in serious urban thermal environment 

problem particularly the urban heat island(UHI) phenomenon. Today, it’s urgent to control and curb urban thermal environment 

based on the UTE’s spatial-temporal characteristics, in addition, the seasonality of UTE lacked in-depth understanding, which is also 

a significant question in UTE management, a better understanding the UTE will help human improve governing efficiency and effect. 

Thus, in our study, we investigated the spatial-seasonal variation and distribution of UTE by statistic analysis, spatial index analysis 

and landscape metric analysis. We found that: there has a significant spatial and temporal differences on UTE under different seasons, 

the UHI intensity and mean LST showing a significant difference and stability, additionally, “heat island” of urban showing a cluster 

trend in urban space particularly in high UHI intensity seasons. These results extend our understanding on the spatial-seasonal 

variation, heterogeneity and distribution of UTE and which can provide very significant reference and information for urban 

decision-makers to govern UTE. 
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1. INTRODUCTION 

In the 21st century, urbanization has already became a 

worldwide tendency with an unprecedented speed over the past 

decades. More than 55% world’s population living in the urban 

area, which will more than 68% in 2025 reported by the 2018 

Revision of World Urbanization Prospects(Chakraborty and Lee, 

2019; United Nations, 2018; Yu et al., 2019; Zhou et al., 2014). 

Urban area, as the crucial living space of human being, will 

occupy an more important position of word, particularly in the 

future. Increasing population not only promotes the social-

economic development, but also causes negative effect on the 

urban system, such as the rapid urban expansion, air pollution, 

traffic jam, surface temperature increasing, biodiversity 

reduction, energy consumption and so on(Bhati and Mohan, 

2015; Zhou et al., 2018). One of the most serious problems is 

the urban heat island(UHI) phenomenon, which influences the 

urban thermal environment seriously(Deilami et al., 2018). This 

phenomenon also caused by the urban development and 

population increasing, because the urban development meant 

the change of urban physical properties in land surface, much 

natural and semi-natural land surface transformed into 

impervious surface(Yu et al., 2019).  These changes can induce 

the temperature of urban region were much higher than 

suburban region and form the UHI phenomenon. According to 

previous researches, UHI phenomenon can deteriorate 

ecological environment and influence human health(Kuang et 

al., 2018). The sustainable urban development need control and 

optimize the urban thermal environment for constructing a 

better living space.  

 

Urban land surface temperature(LST), as one of the most 

important parameters for analyzing urban thermal environment, 

which is the radiative skin temperature of the urban 

surface(Bhati and Mohan, 2015; Kuang et al., 2018; Liu and 

Weng, 2008).  Researchers usually utilized the LST to describe 

and analyze the urban thermal distribution especially the UHI 

phenomenon, and many researches indicated that LST is 

significant influenced by urbanization, land cover type and 

global climate, which all can change the LST(Madanian et al., 

2018; Zhu et al., 2018). UTE, as a indispensable composition of 

urban ecosystem, closely related with human being, extreme 

UTE badly destroys urban ecosystem, such as UHI, which 

accelerate the urban LST increasing and deteriorate UTE, so it 

can be used to reflect and embody UTE. In order to improve 

UTE and mitigate UHI intensity, first and foremost, we should 

better understand the spatial distribution and variation’s 

characteristics of the UTE, particularly the spatial and seasonal 

variation, which also can provide helpful information for other 

scientific research. 

 

Traditionally, monitoring and measuring UTE usually depend 

on  in-situ measurement or data collection from meteorological 

stations, which cost a lot and are usually difficult to gain(Zhu et 

al., 2018). In recent decades, thermal infrared remote sensing 

imagery, as a rapid, low cost and large-scale observation 

technology for global thermal environment, have made a great 

progress under vast research effort, and widely used in thermal 

environment research. The types of infrared sensors increased 

rapidly with a higher spatial resolution, shorter revisit time and 

larger observational range, which provide new chance for 

researchers to further study the thermal environment from 

regional scale to global scale. The thermal infrared data sources 

mainly including Landsat Thematic Mapper (TM)/Enhanced 

Thematic Mapper (ETM+)/Thermal Infrared Sensor (TRIS), 

Terra/Aqua Moderate Resolution Imaging Spectroradiometer 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W9, 2019 
ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment (RSAE), 25–27 October 2019, Nanjing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W9-95-2019 | © Authors 2019. CC BY 4.0 License.

 
95



 

 

(MODIS), ASTER and others, which are the most widely-used 

to study thermal environment. MODIS was commonly utilized 

in large regional or global study with a coarse spatial resolution, 

so MODIS is not appropriate to explore UTE. Landsat archive 

has a higher spatial resolution(60m-120m), high data quality 

and cost-effective to obtain(Zhou et al., 2018). In our study area 

and time periods, Landsat 8 TRIS data is available and cloud-

free, therefore, we utilized Landsat 8 TRIS data in our study. 

 

According to previous studies, UTE variation and distribution 

closely related to land use types, urban structure, urban surface 

feature materials even the air speed and cloud cover(Zullo et al., 

2019). The influence factors of UTE have been extensively 

studied in recently years, especially the land covers, such as 

build-up area, water and vegetable, which were demonstrated 

closely related with UTE(Guo et al., 2019; Keeratikasikorn and 

Bonafoni, 2018; Madanian et al., 2018). However, the study of 

spatial distribution, heterogeneity and pattern of urban thermal 

environment was less researched than the former, which also is 

a significant research topic for sustainability development of 

urban environment. Chaiyapon et al. (Keeratikasikorn and 

Bonafoni, 2018) utilized main statistics to describe the urban 

thermal environment, such as mean, standard deviation, 

maximum and minimum LST value; Weng at al.(Weng et al., 

2018) presented a innovative method by combining the 

Shannon’s entropy and Pearson chi-square statistic to explore 

UTE in summer. Sun et al.(Sun et al., 2019) quantified the 

diurnal and seasonal of UTE using of 245 China cities to 

display the characteristics of UHI. Sabiha et al. (Sultana and 

Satyanarayana, 2018) combined land types and LST pattern to 

study the UTE in winter; Liu at al.(Liu and Weng, 2008) 

explored the seasonal variation of relationship between 

landscape pattern and LST; Peng et al. (Peng et al., 2018) 

compared the seasonal factors which result in the spatial 

distribution of LST. Victoria et al.(Miles and Esau, 2017) 

utilized MODIS LST production to explore the spatial and 

seasonal characteristics of UHI phenomenon. Qian et al.(Qian et 

al., 2018) utilized the maximum difference and standard 

deviation of temperature to explore the urban thermal 

heterogeneity through in-situ measurement. Most of previous 

studies usually ignored the UTE’s seasonality, and paid more 

attention on summer, additionally, the spatial heterogeneity 

wasn’t be well studied. There also have a lot of researches paid 

attention on the LST and it’s effect factors, such as impervious 

surface area, vegetation area or water body, and want to explore 

the cooling effect of different surface features to decrease urban 

heat island or high LST distribution, which have made great 

progress(Firoozy Nejad and Zoratipour, 2019; He et al., 2019; 

Sherafati et al., 2018). In addition, most previous researches 

need to be combined with the actual situation of UTE, 

particularly gaining insight into it’s detailed spatial information 

of different time periods, for mitigating the terrible problem on 

UTE. Therefore, more researches need to focus on the UTE 

itself, such as the heterogeneity of UTE, UHI characteristics on 

different seasons and sub-regions, which also have huge 

significance to optimize spatial thermal environment. On the 

other hand, the “heat island” region of urban area, which have 

the higher LST of all the urban region, have not been focused 

enough.  

 

In this article, we selected a whole urban ecosystem, which take 

the urban nuclei as center covering complete urban scope, as 

our study area. Different seasons cloud-free Landsat 8 imagery 

were utilized to explore and describe the special-seasonal 

variation and distribution of UTE by analyzing UHI intensity, 

urban normalized LST, seasonal difference of UTE. The 

heterogeneity of UTE can be quantified by normalized LST, 

mean LST standard deviation(SD) and LST’s amplitude 

variation. Meanwhile, we analyzed the spatial distribution of 

“heat island ” region using landscape metrics index to detailed 

describe the UTE’s variation and distribution pattern. In general, 

our study provided a better detailed understanding of UTE, 

particularly the spatial and seasonal variation under a whole 

urban system, to provide helpful information for decision-

makers for making efficient and accuracy policy on UTE 

management. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The city of Nanjing, Jiangsu province, China was selected as 

our main study area(longitude: 118°22–119°14E; latitude: 

31°14–32°37N), which situated in east of China, encompassing 

an area of 6587.02 km2(see Figure 1). Nanjing is the capital city 

of Jiangsu, and regarded as the significant central city of the 

eastern coastal economic belt and the Yangtze River economic 

belt. The development of economy and population in Nanjing 

have increased rapidly during  past decades, The population has 

increased almost 66%, from 5.01 million in 1990 to 8.33 million 

in 2017. Nanjing’s gross domestic product (GDP) has increased 

almost dozens of times, from approximately 16.09 billion in 

1990 to more than 1,171.51 billion in 2017. As for the climate, 

Nanjing has a subtropical monsoon climate which the annual 

average air temperature is about 15.4° C, the annual average 

rainfall can reach 1157mm. In recent decades, The expansion of 

built-up area in Nanjing has increased sharply(from 515 km2 in 

2000 to 1398 km2 in 2017) with rapid social and economic 

development, resulting in higher temperature in main urban area 

than suburbs. To comprehensive explore the UTE special-

seasonal distribution and avoid the limitation of administrative 

boundaries, our study is of 5026.53 km2 circle area covering all 

of the central downtown and most of the suburb, whose central 

point is the Nanjing’s central area Xinjiekou business district 

(longitude: 118°46'43"E; latitude: 32°02'38"N), and with the 

radius of 40km. The circular area was selected  for two reasons, 

first, the most traditional study were limited by the 

administrative boundary, we want to research the total urban 

ecosystem and the whole thermal environment, which have 

more significance for guiding the urban planning. Second, the 

circular area is convenient for statistic and comparison in our 

study, so we divide our study into eight sub-regions for further 

analyzing(see in Figure1(b)). 

  

2.2  Data 

2.2.1 Landsat 8 TIRS images: Landsat 8 TIRS instrument has 

two thermal infrared bands at 100m spatial resolution(Band 10 

and Band11), which was considered as the one of the best 

thermal infrared sensors, can provide opportunity for 

monitoring the Land surface temperature, noted that the TRIS 

data have been resampled to 30m by the USGS. Landsat 8 data 

can be download freely from the United States Geological 

Survey(USGS) website(https://earthexplorer.usgs.gov/). The 

TIRS data were used for retrieving LST. Four high-quality 

(cloud-free) scenes of Landsat 8 images(path/row 120/38) on 28 

March, 2016, 21 July, 2017, 7 October 2017, 9, December, 

2016 were chose for representing the four seasons of the year, 

the reason we chose from two years because there have no 

complete high-quality images of different seasons in the same 

year. 

2.2.2 Other auxiliary data: The MODIS/Terra LST Daily L3 

Global 1 km SIN Grid data (MOD11A1) and historical 

meteorological data was utilized to validate the LST result 
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which retrieve from the Landsat 8 TRIS data(Darge et al., 2019). 

MOD11A1 LST data are retrieved by the split-window 

algorithm, which can be downloaded freely from 

https://wist.echo.nasa.gov/api/. The historical meteorological  

 

data was collected from the Urban weather station including the 

temperature data on a specified date, such as maximum 

temperature, minimum temperature, wind direction and so on. 

 

 

Figure 1. Map of study area of Nanjing, China.(a) Location of study area in China; (b) Division of study area; (c) Landsat 8 OLI false 

color composition image of study area(RGB=543)

2.3 Data Pre-processing 

Before conducting temperature retrieval, Landsat TRIS data 

must be processed for reducing the errors due to instrumental 

variations in data acquisition, image noise, and misregistration, 

which will convert from the original digital number(DN) value 

to radiance (W/(m2. sr. μm))(Darge et al., 2019). Atmosphere 

correction of the Landsat 8 data, using FLAASH algorithm, was 

conducted on the ENVI 5.3 platform. After finishing the pre-

process of Landsat 8 image data, all of the spatial data were 

converted to Lambert Azimuthal Equal Area Projection, with 

reference to the WGS84 datum. The study area boundary was 

used to clip the remote sensing data. 

 

2.4 LST Retrieval and Validation 

The LST of study area retrieved, using Landsat 8 Band10, based 

on the Radiative Transfer Equation (RTE) algorithm(García-

Santos et al., 2018; Voogt and Oke, 2003). The advantage of 

this algorithm is not only it needs less amount of parameters to 

retrieve LST comparing with other algorithm, such as mono-

window algorithm and split-window algorithm, but also it was 

demonstrated that it has a high LST retrieve accuracy using 

Band10 of Landsat 8 than split window algorithm and single 

channel method(Darge et al., 2019; Keeratikasikorn and 

Bonafoni, 2018; Shirani-bidabadi et al., 2019; Xiaolei Yu, 

2014).  In the status of data pre-processing, The landsat 8 

thermal band 10 have been converted to at-sensor radiance at 

the top-of-atmosphere (𝐿𝜆 ), next, Planck’s radiance function 

was utilized to calculating brightness temperature. The LST can 

be expressed in equation as follows: 

 

     𝑇 =
𝐾2

𝑙𝑛(
𝐾1
𝐿𝜆

+1)
                                      (1) 

 

Where 𝑇 = At-sensor brightness temperature(in Kelvin), 

 K1  , K2  = 774.89 W m−2 sr−1 μm−1 and 1321.08 K, 

respectively(Guo et al., 2019).  

 

𝐿𝜆 = [𝜀𝐵(𝑇𝑠) + (1 − 𝜀)𝐿 ↓] + 𝐿 ↑                      (2) 

 

Where 𝐿𝜆 = Radiance recorded of channel 10  

            𝜀 =  surface emissivity  

            τ = Atmospheric transmissivity at thermal infrared band 

            𝐵(𝑇𝑠) = Radiation brightness of the blackbody 

            𝐿↓, 𝐿↑ =Downwelling， upwelling atmospheric radiance           

It’s noted that 𝜀  was calculated through the Normalized 

Difference Vegetation Index (NDVI) threshold method(Thanh 

Hoan et al., 2018; Xiaolei Yu, 2014), which is widely used in 

land surface emissivity calculating, respectively(Guo et al., 

2019; Xiaolei Yu, 2014). Additionally, the 𝐵(𝑇𝑠) is computed 

based on the Plank’s function, which can be expressed in the 

following Equation.3. 

 

              𝐵(𝑇𝑠) =
[𝐿𝜆−𝐿↑−𝜏(1−𝜀)𝐿↓]

𝜏𝜀
                                 (3) 

 

After finishing the LST retrieval, we need to validate the result 

of the retrieval, as we know, it’s hard to gain vast true ground 

surface measurement temperature, because of the unavailability 

and  uncertainty with the concurrent time and position, so we 

learn from some researches, such as Yosef et al. (2019), Qin et 

al.(2011) and Srivastava et al.(2009). They all found that the 

LST retrieved from the Landsat 7 ETM+ and Landsat 8 TRIS 

have a difference about 2°C with the MODIS LST 

production(MOD11A1), based on this fact, we can validate our 

retrieved Landsat 8 LST result rapidly and accurately, and if the 

difference between the two less than 2°C, the accuracy of LST 

retrieval is acceptable for further analysis(Darge et al., 2019). In 

addition, we also compared our retrieval results with the 

historical meteorological data, and calculated the correlation 

between them for further validation.   

 

2.5 LST Normalization and Calculation of UHI Intensity 

The standardization of LST can display the spatial distribution 

and pattern thermal environment in different time periods, 

because the LST comparison between different seasons is hard 

due to different climate background(Weng et al., 2018), the 

different absolute temperature in different season differ widely, 
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but the distribution pattern of LST stay consistent, which will 

facilitate our analysis. On the other hands, the comparison of 

normalized LST in different seasons can represent the level of 

LST under the whole UTE. The standard LST can be calculated 

using the following Equation.4. 

 

𝐿𝑆𝑇𝑛 =
𝐿𝑆𝑇𝑖−𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑚𝑖𝑛
                                      (4) 

 

Where 𝐿𝑆𝑇𝑛  is the normalized LST, 𝐿𝑆𝑇𝑖  represents the 

individual LST of pixel i, 𝐿𝑆𝑇𝑚𝑖𝑛 and 𝐿𝑆𝑇𝑚𝑎𝑥  is the minimum 

and maximum temperature of our study area. 

 

After normalizing the LST of each time periods, we need to 

classify the standard LST data to conduct further study. 

According the mean temperature and standard deviation of 

every standard LST results, we divided each  results into five 

levels: very low temperature zone(𝑇 ≤ 𝑇𝑚𝑒𝑎𝑛 − 1.5 ∗ 𝑠𝑡𝑑), low 

temperature area( 𝑇𝑚𝑒𝑎𝑛 − 1.5 ∗ 𝑠𝑡𝑑 < 𝑇 < 𝑇𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑 ), 

medium temperature area( 𝑇𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑 < 𝑇 ≤ 𝑇𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑 ), 

high temperature area(𝑇𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑 < 𝑇 ≤ 𝑇𝑚𝑒𝑎𝑛 + 1.5 ∗ 𝑠𝑡𝑑), 

very high temperature area(𝑇 > 𝑇𝑚𝑒𝑎𝑛 + 1.5 ∗ 𝑠𝑡𝑑). 

 

Based on the classification of temperature of study area, we can 

describe the UTE further, as we know, UHI is a common 

phenomenon in many metropolis including Nanjing, which 

dramatically change the UTE. Description of UHI intensity can 

embody and reflect the UTE more quantitatively and 

comparably during different time periods and regions. So the 

urban heat island ratio index, suggested by Xiong et al.(2012), 

to quantify the UHI intensity, which was shown in the 

Equation.5.    

             

  S𝑈𝐻𝐼 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
1

100
∑ 𝑊𝑖𝑃𝑖

𝑛
𝑖=1                      (5) 

 

Where n is the number of temperature level which more than 

the medium temperature level; 𝑊𝑖  represents the weight of 

temperature level i, and 𝑃𝑖 is the percentage of temperature level 

i. 

 

2.6 Spatial-seasonal Analysis of UTE 

2.6.1  The heterogeneity and variation analysis of UTE: For 

exploring the spatial variation and heterogeneity of LST in 

different zones and time periods, we not only analyzed the 

whole region, but also divided our study area into eight sub-

areas based on the shape feature of our study area, which can 

represent different situation at directions. The heterogeneity of 

the UTE was quantified by standard deviation(SD) and the 

different between the upper and lower quartiles(DULQ), the 

reason we used the DULQ because there have some abnormal 

LST value(extreme high LST, such as the steel mill, power 

station or other heavy industry factories ), so the upper and 

lower quartiles are more objective to quantify the global 

heterogeneity of LST. The mean temperature and the standard 

deviation of each zones were also counted for analyzing the 

detailed variation and the zone’s differences. The UHI intensity 

of each seasons and each sub-regions were researched based on 

different directions. The destination of all the steps above is to 

explore the spatial distribution and distribution  heterogeneity of 

UTE. 

 

2.6.2 Spatial-distribution pattern of urban thermal region: 

In the UTE, the spatial distribution pattern of which need to be 

further explored, particularly the extreme high temperature 

region(  𝑇 > 𝑇𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑, cotaining level 4 and level 5 ), 

which is the “ heat island “ in our urban thermal environment, 

and these areas have the most serious impact on the living 

environment of human being, plants and animals than any other 

regions. Exploring the special distribution and variation of 

urban extreme heated regions can provide meaningful 

information for UTE management. The structure of heat region 

under different seasons were analyzed utilizing landscape 

metrics including patch density (PD), Patch number(PN), 

Aggregation index(AI), Mean patch size(MPS), Total area(TA) 

and Patch cohesion index(PCI) (Table 1). All of the landscape 

metrics were computed in Fragstats 4.2 software, and 

conducting analysis based on these metrics during different 

seasons. 

Landscape Metrics Description Unit Range 

Patch density (PD) 
The number of patch per square 

kilometer 
count/km2 > 0 

Patch number(PN) 
The  total number of patches in 

the landscape 
count > 0 

 Aggregation 

index(AI) 

Mean distance to the nearest 

same patch 
None 0-100 

Mean patch 

size(MPS) 
Mean size of the total patch km2 > 0 

Total area(TA) 
The total area of patch in the 

landscape 
km2 > 0 

Patch cohesion 

index(PCI) 

The physical connectedness of 

surrounding patch 
None 0-100 

Table 1. Descriptions of selected landscape indexes 

 

3.RESULTS AND DISCUSSION 

3.1 Land Surface Temperature Retrieval and Validation 

The LST of our study area was derived from Landsat 8 TRIS 

data by employing RTE method in different seasons were 

shown in the Figure 2, we can find that the relatively higher 

temperature usually concentrated in the urban area, and the 

suburban area shows a lower temperature than the urban region, 

which was called the urban heat island phenomenon. The spatial 

distribution of UTE showed quite different distribution pattern 

between four seasons.  

 

In order to validate the LST retrieval results, we compared them 

with the MODIS LST production(MOD11A1) and  historical 

temperature data of Nanjing. We found that the difference of the 

average LST of our study area, retrieved from the Landsat 8 

TRIS data, and the average LST from MOD11A1 production 

are within 2°C. In addition, the R2 (correlation between 

observed value and predicted value) of average retrieval LST 

result from the TRIS data and historical temperature is 0.9693, 

which represents a acceptable retrieval accuracy. Based on 

verification above, the LST retrieval map satisfied the needs of 

our further study.  

 

3.2 Spatial-seasonal Heterogeneity Analysis and UHI 

Intensity Calculation 

After retrieving the LST of different seasons, we calculated the 

standard deviation(SD) and difference between upper and lower 

quartiles(DULQ) under different seasons, which is shown in the 
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Figure 3. In summer, all of the two indexes is the largest, which 

meant summer has the largest heterogeneity, and winter has the 

lowest. The spring and autumn have the similar heterogeneity, 

which need further study. Overall, the heterogeneity varied 

obviously with the seasons. 

 

Figure 2. Land surface temperature of different seasons 

 

In order to further detailed analyze the heterogeneity of our 

study, we decomposed the study area, compared the average 

LST of different directions and the SD under different regions, 

as shown in the Figure 4, according to previous findings, UHI 

intensity is closed to land cover, in our study, there have large 

difference of land cover composition and urban zoning between 

different directions, which caused different LST distribution. 

The standard deviation of LST can represent the zonal LST’s 

change level, which is a essential element to describe the UTE. 

Additionally, the standard deviation of LST during different 

seasons shows a different trend, especially in summer, the SD of 

LST is extremely higher than any other seasons of directions. 

As for the different directions, the NE and SW directions have 

the higher SD of LST during all seasons, the SE and W 

directions have the lower LST’s SD, especially in summer, 

autumn and winter. The overall level of SD value was linking to 

the seasonal change, but the difference in directions may caused 

by the regional differences, such as the number of land cover 

type, the composition of land cover or human activity. As for 

the mean LST, the directions of SE, S, SW have the high mean 

LST, which also have high UHI intensity. 

 
Figure 3. Seasonal LST’s standard deviation(SD) and 

difference between upper and lower quartiles(DULQ) 
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Figure 4. Distribution of mean LST and the variation of 

LST’s  standard deviation 

 
Base on the retrieval LST results, we reclassified these LST 

map into four temperature levels, and calculated the urban heat 

island index, as shown in the Table 2, from which we can 

conclude that the intensity of urban heat island in summer is the 

highest, and in other seasons, this phenomenon has slowed 

down.  

Season Spring Summer Autumn Winter 

UHI intensity 0.1225  0.1578  0.1289  0.1144  

Table 2. Urban heat island index under different seasons 

4.5 Spatial distribution and pattern of urban heated region  

Urban heated region, which refer to the high temperature 

area( 𝑇 > 𝑇𝑚𝑒𝑎𝑛 + 1.5 ∗ 𝑠𝑡𝑑 ) and represent the “heat island” of 

urban heat island phenomenon in UTE, play a crucial role in the 

UTE. In our study, we used six landscape metrics to describe 

the spatial distribution and pattern of urban heated region, the 

following Figure 5 shows the five landscape metrics of urban 

heat region of different seasons, we can find that summer has 

the largest heated region area, however, the number of which is 

the least than other seasons. Additionally, winter’s TA is the 

least and MPS is smallest of all the seasons, which contain 

many fragmentized heated regions in the study area, in other 

words, the area of heated regions in winter become less and 

which distribute more dispersedly than other seasons. The PCI 

and AI indicate that the heated regions of our study area tend to 

be concentrated and highly connected in summer, and 

weakening in other seasons especially in winter. The spatial 

clustering and increase of urban heat regions result in the 

variation of UTE, which will aggregate the UHI intensity 

especially in summer, so this spatial distribution of heated 

regions need be focused on based on spatial-seasonal 

characteristics. 

 
Figure 5. Landscape metrics of urban heat regions, (a) TA; (b) PD;(c) NP; (d) MPS; (e) PCI; (d) AI
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5.   CONCLUSION 

In this paper, we utilized the Landsat 8 TRIS imagery to explore 

the spatial-seasonal variation, heterogeneity and distribution of 

UTE by analyzing UHI intensity, comparing seasonal 

normalized LST, and further described the spatial distribution 

and pattern of urban heated region through landscape metrics 

index. The relevant conclusions of our study are as follows: 

 

 (1) The UHI intensity of Nanjing reaches the peak in summer, 

which meant the city has a worst thermal environment for 

human being, plants and animals, and with a high spatial 

heterogeneity, additionally, different districts have various 

thermal environment. So policymakers need to pay close 

attention to the summer, and different strategies need to be 

implemented due to the difference between each regions or 

directions. The heterogeneity of UTE provide a meaningful 

information for urban environment management, where the 

decreasing of heterogeneity can become a future direction of 

research. 

 

(2) Our results also revealed that urban heated region’s spatial 

distribution pattern have a seasonal variations. The structure of 

UTE changes with seasons, the clustering effect is obvious in 

high-LST seasons, and decreased in low-LST seasons, which 

meant that high LST usually together with high spatial  

aggregation of heated regions. This phenomenon was interesting 

and need pad more attention on to explore the factors. So based 

on our results, the distribution of urban “heat island” is another 

perspective to understand the UTE, which should be referenced 

to design urban development planning. we think there have a 

significant idea and method to mitigate bad UTE, which is 

breaking the spatial aggregation and cut off the decreasing the 

spatial connectivity, and try to decrease the area of heated 

region by utilizing some cooling methods. Overall, the heated 

region in our city, which can do harm to our living environment, 

should be controlled and decreased by urban administrators, the 

distribution regularity we found need to be referenced. 

 

(3) The results of our study expanded our understanding of the 

variation of UTE among different seasons, which can be 

referenced to formulate specific measures to solve the UHI 

phenomenon. Summer needs to be focused first, and in other 

seasons, the UTE also need to optimize further. The regional 

urban planning, which was made differ from each area, need 

pay more effort. The detailed urban zonal planning based on the 

current situation of thermal environment should be enacted in 

the future. 
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