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ABSTRACT: 

 

Quantitative analysis of hydrated minerals from hyperspectral remote sensing data is fundamental for understanding Martian 

geologic process. Because of the difficulties for selecting endmembers from hyperspectral images, a sparse unmixing algorithm has 

been proposed to be applied to CRISM data on Mars. However, it‟s challenge when the endmember library increases dramatically. 

Here, we proposed a new methodology termed Target Transformation Constrained Sparse Unmixing (TTCSU) to accurately detect 

hydrous minerals on Mars. A new version of target transformation technique proposed in our recent work was used to obtain the 

potential detections from CRISM data. Sparse unmixing constrained with these detections as prior information was applied to 

CRISM single-scattering albedo images, which were calculated using a Hapke radiative transfer model. This methodology increases 

success rate of the automatic endmember selection of sparse unmixing and could get more accurate abundances. CRISM images with 

well analyzed in Southwest Melas Chasma was used to validate our methodology in this study. The sulfates jarosite was detected 

from Southwest Melas Chasma, the distribution is consistent with previous work and the abundance is comparable. More validations 

will be done in our future work. 
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1. INTRODUCTION 

 

The hydrous minerals on Mars preserve a record of potential 

past aqueous activity. Information regarding mineralogical 

composition would enable a better understanding of their 

formation environment, and provide unique insights into the 

geological evolution of Mars (Lin and Zhang 2017). 

Hyperspectral remotely sensed images generally have several 

hundreds of contiguous electromagnetic wavelengths, and they 

enable us to assess a dense spectrum in each pixel, making 

possible the identification and quantitative analysis of various 

minerals(Nakhostin et al. 2016). At present, there are vast 

amount of hyperspectral remote sensing data on Mars, including 

Thermal Emission Spectrometer (TES)(Christensen et al. 2001), 

Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité 

(OMEGA) (Bibring et al. 2005)and Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM) (Murchie et al. 2007).  

CRISM has the highest spatial and spectral resolution among 

these data, which greatly enhanced our knowledge about 

Martian mineralogy. Though the mineral identifications from 

hyperspectral remote sensing data can indicate the different 

aqueous environments on Mars, quantitative analysis can better 

constrain the formation of these minerals (Poulet et al. 2014, 

Edwards and Ehlmann 2016).  

 

There are several efforts have been made to get quantitative 

mineral abundances using spectroscopy on Mars. Bandfield et 

al. (2002) used TES thermal infrared data to obtain the hematite, 

pyroxene, silicate and sulfate on Martian surface. However, the 

spatial resolution of TES data is too low to locate the hydrous 

mineral accurately. In the Visible-Near infrared (VNIR) 

wavelength, the observed signal of reflected light from a 

particulate surface is a non-linear combination of the spectral 

properties of the minerals(Mustard and Pieters 1989).The 

widely used non-linear mixing models in planetary spectra 

study are Hapke radiative transfer model (Hapke 1981) and the 

geometric optics model of Shkuratov(Shkuratov et al. 1999). 

Both the Hapke and Shkuratov models have been used to 

retrieve mineral abundances from the VNIR spectra of Mars 

(Poulet et al. 2008, Poulet et al. 2014, Edwards and Ehlmann 

2016). However, the identification of the endmember signatures 

in the original data set is always challenging. The commonly 

used endmember identification method is spectral parameters 

(Viviano-Beck et al. 2014) and visual inspection, which is 

subjective and time consuming. Sparse unmixing method 

proposed by Iordache et al. (2011) can select the optimal 

combination of spectra from a large endmember library to best 

model the image spectra in an unsupervised fashion, avoiding 

the endmember determination in advance. Sparse unmixing 

method has been applied to hydrous mineral abundance 

retrieval on Mars(Lin and Zhang 2017). However, the accuracy 

of abundance retrieval will be decreased as the increasing of 

endmember library. So, endmember library for sparse unmixing 

method should be constrained. A Dynamic Aperture Target 

Transformation (DATT) method proposed in our recent work 

based on Factor Analysis and Target Transformation (FATT) 

method (Liu et al. 2016) can identify specific minerals from 
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Martian VNIR hyperspectral data. The DATT results can 

provide a prior spectral information within the CRISM scenes 

to enhance the performance of sparse unmxing method.  

 

In this work, a new method named „Target Transformation 

Constrained Sparse Unmixing (TTCSU)‟ was proposed to 

accurately retrieve the abundance distributions of hydrous 

minerals from CRISM data. First, an endmember library is 

carefully constructed. Then DATT method is used to get the 

priori information for sparse unmixing. At last, sparse unmixing 

constrained with DATT detections as a priori information was 

applied to CRISM single-scattering albedo images, which are 

calculated using a Hapke radiative transfer model. 

     

 

2.  STUDY AREA AND DATA SETS 

2.1 Study Area 

Melas Chasma is the widest segment of the Valles Marineris on 

Mars and is located in the center of this canyon system (Figure 

1). It contains extensive and highly organized Hesperian-aged 

valley networks and alluvial fans. Our study site is located in 

southwest Melas Chasma, where close to an enclosed perched 

basin. A sequence of interbedded poly- and mono-hydrated 

sulfate and jarosite deposits were identified by Liu et al(Liu and 

Catalano 2016). Specifically, these hydrated sulfate deposits are 

interbedded and have been highly deformed. The interbedded 

layers are exposed at the bottom of the stratigraphic column, 

unconformably overlain by a thick monohydrated sulfate unit.   

 

 
Figure. 1.  Southwest Melas Chasma. (a) Regional context. The hill shaded map is produced from THEMIS day IR with MOLA 

color, the red outline is footprint of CRISM FRT00013F5B. (b) FRT00013F5B spectral parameters map overlain on CTX 

(R:BD2265, G: SINDEX, B: BD2100). North is up in both images. 

 

2.2 Data Sets 

2.2.1 CRISM data: CRISM is a VNIR imaging spectrometer 

onboard the Mars Reconnaissance Orbiter (MRO). It covers the 

wavelength range of 0.36~3.94μm. In this paper, the CRISM 

targeted mode observation with full spatial resolution of 18 

m/pixel, and a spectral sampling of 6.5 nm (Murchie et al. 2007) 

were used. 

 

The CRISM image used in this study is FRT00013F5B. The 

pre-processing including photometrical and atmospherical 

correction was finished with the help of CRISM Analysis 

Toolkit (CAT). The image was photometrically corrected by 

dividing each spectrum by the cosine of the incidence angle. 

Then it was atmospherically corrected using the “Volcano 

Scan” method (Murchie et al. 2007). Although Volcano Scan 

technique does not remove aerosol contributions to spectra 

completely, it corrects the main atmospheric absorption caused 

by CO2. The wavelength between 1~2.6μm were used in this 

study, because the primary spectral feature of hydrous minerals 

is within this range.  

 

2.2.2 CRISM Spectral Library: The CRISM spectral library is 

a collection of laboratory spectra of Mars-analog materials 

supplied by the CRISM Team. The library was used to build 

endmember library for spectral unmixing.  It contains 2463 

spectral analyses of 1228 specimens, and all spectra were 

measured under desiccating conditions to remove atmospheric 

H2O contamination, providing a better proxy to current 

desiccated Martian conditions. The naturally occurring minerals 

with valid spectra were selcted. Finally, 139 samples were 

choosen to construct the endmember library. All spectra were 

resampled at the wavelength of the CRISM using linear 

interpolation. All the sulfates spectra in the endmember library 

were used to bulid a target library for DATT detection.  

 

3. METHOD 

Target Transformation Constrained Sparse Unmixing (TTCSU) 

was proposed in this study to get more reliable mineral 

abundance from VNIR hyperspectral remote sensing data. The 

flowchart of TTCSU is shown in Figure. 2. First, an endmember 

library is carefully constructed based on CRISM spectral library. 

Then DATT method is used to detect the possible presence of 

the specific minerals. DATT detections will be the priori 

information for sparse unmixing. At last, sparse unmixing 

constrained with DATT detections as a priori information was 

applied to CRISM single-scattering albedo images, which are 

calculated using a Hapke radiative transfer model.  
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Figure. 2. The flowchart of TTCSU method. 

 

3.1 Dynamic Aperture Target Transformation 

Dynamic Aperture Target Transformation (DATT) is inspired 

by Factor Analysis and Target Transformation (FATT), it 

alleviates several key limitations in FATT and has the potential 

to test for specific minerals on Mars. The DATT method 

includes three steps: 1) Using the Hyperspectral signal 

identification by minimum error (Hysime) algorithm to 

determine important eigenvectors objectively. 2) Normalizing 

library and modeled spectra to allow for RMSE comparison 

between minerals with different reflectance scales, allowing for 

robust assessment of fit quality. 3) Using a dynamic aperture to 

detect minerals from hyperspectral data on Mars. Rather than 

analyzing an entire CRISM scene for a specific mineral, we 

analyze specific sets of pixels within our moving and 

dynamically shaped aperture. The pixels in which detections 

from all the differently shaped apertures intersect are considered 

as true detections. 

 
Figure. 3. The illustration of DATT. FATT is applied to all 

pixel subsets (blue, orange, red, green and purple) and if all the 

apertures return detections, the pixels in the yellow part are 

considered as true detections. 

 

3.2 Single-Scattering Albedo Retrieval 

 Single-Scattering Albedo (SSA) is the ratio of scattered light to 

total extinct light. Hapke bidirectional reflectance distribution 

function relates the reflectance of a mixture to a linear 

combination of the SSA of its constituent endmembers. It 

enables us to perform linear mixture analysis of the observed 

spectra (Goudge et al. 2015, Liu et al. 2016, Lin and Zhang 

2017). The function is described as the following equation 

(Hapke 1981): 
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where r(i,e,g) is the radiance factor, equivalent to CRISM I/F; 

i, e, and g are incidence, emergence, and phase angles, 

respectively; w is the average single particle scattering albedo; 

B(g) is the backscattering function at the phase angle g; P(g) is 

the surface phase function; H is the Chandrasekhar integral 

function associated with the observation geometry. 

 

In this work, we assumed that P(g)=1, which implies that the 

surface scatters isotropically. The model is also on the 

assumption that there is no opposition effect. Because the 

opposition effect is strongest for phase angles <15°(Mustard 

and Pieters 1989), and our data are at phase angles  30°. Thus, 

B(g)=0; The effect of anisotropic scattering on abundance 

estimates for binary and ternary mixtures is about 5–10% when 

measured at phase angles of 15–120°(Mustard and Pieters 

1989). Therefore, we can convert reflectance of CRISM images 

and spectral library to SSA with analytic solution of equation 

(1): 
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The SSA of minerals can be added linearly: 
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F is the abundance of each component in the mixture.  

 

3.3 Sparse Unmixing Using Spectral A Priori Information 

Sparse unmixing (SU) is an active research area in 

hyperspectral unmixing in recent years(Iordache et al. 2011, 

Iordache et al. 2014), which aims to find the optimal subset of 

signatures in a spectral library that can best model hyperspectral 

data. A sparsity regularizer is commonly imposed to promote 

the number of selected signatures as small as possible. However, 

the high mutual coherence of spectral library limits the 

performance of SU. In practice, it assumes that some materials 

in the spectral library are known to exist in the scene. Tang et al. 

(2015) incorporated the spectral a priori information into SU, 

presented a new algorithm, which is termed sparse unmixing 

using spectral a priori information (SUnSPI), the problem can 

be written as equation: 

2

1 2,1

1
min ( )

2
s P RFx

AX Y X HX X                 (6) 

 

where Y is the measured spectra of the pixels (L bands, K 

pixels), L KY R  ; X is the abundance matrix corresponding to 

reflectance spectral library A(L bands , m signatures), L mA R  , 
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m KX R  ; 0s   and 0P   are regularization parameters. 
m mH R   is a diagonal matrix related to the set of priori: 
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  denotes the 1  norm, this term enforces each 

column of X to be sparse; 
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  denotes the 2,1  

norm, this term is proposed to enforce the row-sparsity; 
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n
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 , ix  represents the i-th column, this term 

is a indicator function( ( )R ix   is zero if ix  belongs to the 

nonnegative orthant, otherwise ( )R ix   is infinity). The 

optimization problem in (3) can be solved via alternating 

direction method of multipliers (ADMM). 

Here, the sparse unmixing is performed pixel by pixel. The 

DATT detections of each pixel are the priori information for 

sparse unmixing.   

 

4. RESULTS 

4.1 TTCSU results 

According to TTCSU results in FRT00013F5B, the major 

hydrous sulfates are jarosite, poly-hydrated sulfate and 

szomolnokite. As shown in Figure.4, the abundances of sulfates 

are related to CRISM parameter values, indicating our 

abundance results are linear correlated to the strength of 

absorption features. The abundance distribution of sulfates is 

consistent with topography. The fits between measured and 

TTCSU modeled spectra are very good, as shown in Figure.4g-i. 
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Figure. 4.  The abundance map of hydrous sulfates in Southwest Melas Chasma. a) Jarosite abundance map. b) Poly-hydrated sulfate 

abundance. c) Szomolnokite abundance map. d) The correlation between jarosite abundance and BD2265. e)  The correlation 

between poly-hydrated sulfate abundance and SINDEX. f) The correlation between szomolnokite abundance and BD2100. g) 

TTCSU fit of pixels with high abundance jarosite. h) TTCSU fit of pixels with high abundance poly-hydrated sulfate. i) TTCSU fit of 

pixels with high abundance szomolnokite.    

                                                                                                                  

 

4.2 Validation of results 

The spectra of jarosite, poly-hydrated sulfate and szomolnokite 

with highest abundance were extracted using ratio technique, as 

shown in Figure. 5. The comparison with library spectra shows 

that the ratio spectra in the high abundance region have the 

main spectral feature of the corresponding sulfate. The exact 

mineral spectra directly extracted from CRISM image based on 

our abundance results verified the validation of TTCSU method.   

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1003-2018 | © Authors 2018. CC BY 4.0 License.

 
1006



 

 
Figure. 5. a) The ratio spectra of  jarosite, poly-hydrated sulfate and szomolnokite. b) The library spectra. 

 

Using Hapke model and least square method, Liu,et al. (2016) 

got the jarosite abundance map (Figure. 6b) in FRT00003F5B, 

which is similar with our result (Figure. 4a), especially in the 

high abundance regions. The szomolnokite wasn‟t detected in 

their works because of the lack of endmembers in the 

endmember library. However, according to the DATT fits, 

TTCSU fits and ratio spectra, the szomolnokite is a possible 

mineral in FRT00003F5B.  

 

 

 
Figure. 6.  The jarosite distribution in FRT00013F5B (Liu et al. 2016). a) CRISM parameter index map for Jarosite b) Modeled 

jarosite abundance.      
 

 

5. CONCLUSIONS 

 

Target transformation constrained sparse unmixing method for 

hydrous mineral retrieval was proposed in this paper. The 

preliminary application to CRISM image shows the good 

performance of TTCSU method. In Southwest Melas Chasma, 

jarosite, poly-hydrated sulfate and szomolnokite are detected, 

which are validated by extracting spectra from image and 

comparing with previous studies. More CRISM images should 

be used to verify TTCSU in the future work.   
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