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ABSTRACT： 

 

Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have 

become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their 

limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 

16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower 

spatial resolution (>1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution 

remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three 

years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational 

Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. 

Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall 

correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50% (R2=0.52) and 

the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64% of PAR variance (R2=0.64); 

2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2=0.85, 

RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily 

meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day 

input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP 

estimation accuracy in cropland.    

 

1.INTRODUCTION 

Gross Primary Production (GPP) is one of the most 

important components of for terrestrial ecosystem carbon cycle 

and global change monitoring. Currently, Light-use-efficiency 

(LUE) models would be one of the most effective model which 

have sample data input but higher estimation precisely in 

different scale. Monteith (1972) first raised the framework of 

LUE models to estimated GPP: 

 

max ( )GPP LUE APAR LUE f stress FPAR PAR      . (1) 

 

In equation (1), APAR is the absorbed photosynthesis 

active radiation, calculated by the fraction of absorbed active 

radiation (FPAR) with the photosynthesis active radiation. 

LUEmax is the potential LUE under no environmental stress, 

but mostly the LUE stresses by many factors such as 

temperature, water content, and light quality (Kalfas et al, 2011; 

Wu et al, 2008; Maselli et al.2009; Suyker and Verma 2012; 

Nguy-Robertson et al, 2015).Since satellites can supply large 

scale observation of terrestrial vegetation, a diverse set of 

satellite based models can apply to model GPP from small 

region to whole continent (Field et al, 1995; Running et al, 

2000; Xiao et al, 2004, Yuan et al, 2007, King et al, 2011, 

Mahadevan et al, 2008). Different models would have different 

parameterization to the stress factor and it can be applied in 

different temporal and spatial resolution. 

Nowadays, most of the LUE based models needs the 

satellite and reanalysis meteorology data input, but these data 

are mostly at lower spatial resolution. For instance, reanalysis 

climate data such as European Center for Medium-Range 

Weather Forecasts (ECMWF) ERA-Interim reanalysis 

(ERA-Interim), or North America Regional Reanalysis 

(NARR), Modern Era Retrospective Analysis for Research and 

Applications(MERRA) data would have high temporal 

resolution (daily) but rather coarse spatial resolution (> 0.5 

degree). However, since some MODIS data based remote 

sensing based-GPP model have a higher resolution at 1km 

(BESS) or 500m (MOD17A2 version 6). So for during the 

downscale, the reanalysis climate data need to resample, the 
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spatial mismatch factor can not be neglected. 

In this research we want to evaluate the difference 

between geostationary, in-situ measurement and reanalysis 

meteorology data. Then we analyzed the result of different 

spatial and temporal resolution input in GPP models and its 

estimation accuracy. 

2. METHODS AND DATA 

The US-NE2 site (41.1649 N, 96.4701 W, 

http://fluxnet.fluxdata.org/ ) was used to be the study area in 

this research, where is the cropland in middle east of the USA. 

Study period was from 2010 to 2012. 

GPP were modeled by MOD17 algorithm, was calculated 

like the following function: 

 

max ( ) ( ) 0.45GPP LUE f T g VPD FPAR SWard       (2) 

 

LUEmax in US-NE2 was set as 2.1 gC/m2/day in this study. 

SWard is the shortwave downward radiation obtained by 

satellite or meteorology data. The GOES-13 geostationary 

satellite digital number (DN) values based on remote sensing 

data and ERA-Interim reanalysis meteorology data were used 

to be the weather data input. The daily, 8-day, 16-day 

meteorology data input were the mean value for the flux tower 

based in-situ measurement data and reanalysis data. In order to 

evaluate the difference between satellite remote sensing data 

and ground based data, we also compared the geostationary 

visible band data onto the downward shortwave radiation data 

from flux tower and ERA reanalysis meteorology data. f(T) and 

g(VPD) were calculated by air temperature and water vapor 

pressure deficit (VPD) (Running et al, 2004) . 

Landsat data is the high spatial resolution remote sensing 

data in this study and the MODIS product of 1km represented 

for low resolution data. The Landsat based NDVI, MOD13 

NDVI/EVI product were used to as vegetation growing 

condition information.  

 

FPAR a VI b                          (3) 

 

where, VI represented for NDVI and EVI, a and b are the 

empirical coefficient from Xiao et al. (2005). Then we 

combined FPAR and meteorology data in LUE model 

(equation.1).  

Finally, different frequency (daily, 8-day, 16-day), spatial 

resolution (30 m, 1 km), source data (in-situ measurement, 

reanalysis meteorology dataset) were input as the LUE model 

import for GPP estimation, so we get different temporal and 

spatial scale based GPP results. To validate multiple data input 

in LUE based GPP model, we used in-situ measurement carbon 

flux data as ’true value’, then evaluated the GPP modeled 

results.   

3.RESULTS 

3.1. Comparison of meteorology data and geostationary 

remote sensing data 

PAR was the most important factor of photosynthesis, 

determined the incident energy of photosynthesis process. 

GOES-13 provided hourly images of a certain observation 

angle from satellite. In band 1 of GOES-13 imager instrument, 

its DN value represented for shortwave radiation reflectance 

from top of the atmosphere. But as the geostationary remote 

sensing signal would affect by the zenith angle, it would hard to 

compare different period’s DN value and in-situ measurement 

results without BRDF correction. So we compared GOES-13 

imager band 1 DN value and flux tower based in-situ 

measurement downward shortwave radiation in different time 

when the sun angle is almost the same in this section (Figure 

1-3). 

     Figure.1-3a,b stated that it has negative correlation 

between shortwave radiation incident and GOES-13’s 

reflectance signal: when incident shortwave radiation increases, 

the GOES-13 DN value decreases. Because GOES-13’s high 

DN value represented for the observation area which had high 

percentage of cloud cover, the downward shortwave radiation 

would be lower at that time. Figure.2a showed that GOES-13 

DN values had highest correlation (R2= 0.58) with in-situ 

measurement data at 12:00 during daytime, and ERA reanalysis 

meteorology data have similar result with GOES-13 data 

(Figure.2b). However, Figure.1a,b and Figure.3a,b illustrated 

the relevance between geostationary data with in-situ 

measurement data is lower in 9:00 and 15:00 (R2 < 0.4). It 

showed similar relationship between reanalysis meteorology 

data and GOES-13 data.  

On the other hand, the ERA reanalysis meteorology data, 

as a satellite based remote sensing product inverse from 

geostationary data, have high relationship of GOES-13 data in 

different time (Figure.1-3b). Figure.1-3c explained that ERA’ 

downward shortwave radiation also has high correlation with 

in-situ measurement data in 9:00, 12:00, 15:00 (mean R2=0.64). 

So the ERA data represented the real condition of downward 

shortwave radiation in the land surface for the high frequency 

meteorology data input in GPP models. 

However, in order to getting the land surface incident PAR 

from the geostationary data, it need to develop new algorithm 

to correct the value from satellite sensors (Hilker et al, 2008).    
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Figure.1 Comparison of satellite based DN values with in-situ measurement Shortwave radiation input in 9:00. GOES DN is the 

GOES-13 visible band’s record. SWinERA is the ERA reanalysis downward shortwave radiation and SWin is the flux tower in-situ 

measurement downward shortwave radiation (in W/m2). 
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Figuer.2. Comparison of satellite based DN values with in-situ measurement Shortwave radiation input in 12:00. GOES DN is the 

GOES-13 visible band’s record. SWinERA is the ERA reanalysis downward shortwave radiation and SWin is the flux tower in-situ 

measurement downward shortwave radiation (in W/m2). 
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Figure.3. Comparison of satellite based DN values with in-situ measurement Shortwave radiation input in 15:00. GOES DN is the 

GOES-13 visible band’s record. SWinERA is the ERA reanalysis downward shortwave radiation and SWin is the flux tower in-situ 

measurement downward shortwave radiation (in W/m2). 

 

3.2 Comparison of different temporal and spatial scale GPP 

estimation results 

In section 3.1, we found that ERA data can reflect the 

land surface weather condition without in-situ measurement 

data to calibrate. In this section, daily, 8-day, 16-day 

ERA-Interim reanalysis data were used for meteorology data 

input for LUE model to estimate GPP in different spatial scale. 

GPP estimation of different temporal scale showed 

different estimation accuracy. Although flux tower GPP showed 

similar trend with model based GPP, daily scale estimation 

RMSE would be higher than in 8-day and 16-day scale with 

MODIS NDVI and EVI input. GPP estimation accuracy ranged 

from daily (R2=0.85, RMSE=3.05 gC/m2/day), 8-day 

(R2=0.75, RMSE=3.89 gC/m2/day), 16-day (R2=0.76, 

RMSE=3.78 gC/m2/day) meteorology data input with Landsat 

NDVI as vegetation condition import.  

GPP estimation of different spatial scale also showed 

different estimation accuracy. For example, table.3 showed that 

in 16-day scale GPP estimation, model performance of Landsat 

30-m spatial scale NDVI resampled into 1-km scale (R2=0.76, 

RMSE=3.8 gC/m2/day) is better than 1-km MODIS NDVI 

input (R2=0.68, RMSE=4.2 gC/m2/day). They also have 

similar estimation accuracy results from daily and 8-day 

temporal scale data input (Table.1,2). 1-km EVI and NDVI 

input based on MODIS data showed similar GPP estimation 

accuracy in different temporal scale. 

Also, diverse source meteorology data input also lead to 

different result. Using ERA reanalysis data as input would have 
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higher estimation accuracy than flux tower based data in 

different spatial and temporal scale’s result. Table.1 illustrated 

that with daily scale data input, GPP estimation result based on 

ERA meteorology data input has lower RMSE than with flux 

tower based meteorology data input.  

 

Table.1 Comparison of remote sensing based GPP estimation with in-situ measurement carbon flux data in flux tower in daily 

temporal scale. Here the M-NDVI and M-EVI represented for GPP estimation results from the 1-km MODIS based vegetation index 

product input. L-NDVI represented GPP estimation results from the 30-m resolution LANDSAT NDVI resampled to the same region 

in 1-km MODIS data input. 1day-FLUX is using the in-situ measurement meteorology data as input, while 1day-ERA using 

reanalysis meteorology data as input data for GPP estimation (RMSE and MEANbias1 in gC/m2/day).  

  1day-FLUX 
 

1day-ERA 

 
R2 RMSE MEANbias 

 
R2 RMSE MEANbias 

M-NDVI (1 km2) 0.66 4.871 0.96 

 

0.65 4.583 0.76 

M-EVI (1 km2) 0.64 4.736 1.46 

 

0.63 4.409 1.26 

L-NDVI (mean value in 1 km2) 0.85 3.163 1.02 
 

0.85 2.993 0.79 

 

Table.2 Comparison of remote sensing based GPP estimation with in-situ measurement carbon flux data in flux tower in 8-day 

temporal scale. Here the M-NDVI and M-EVI represented for GPP estimation results from the 1-km MODIS based vegetation index 

product input. L-NDVI represented GPP estimation results from the 30-m resolution LANDSAT NDVI resampled to the same region 

in 1-km MODIS data input. 8day-FLUX is using the in-situ measurement meteorology data as input, while 8day-ERA using 

reanalysis meteorology data as input data for GPP estimation(RMSE and MEANbias in gC/m2/day). 

  8day-FLUX 
 

8day-ERA 

 
R2 RMSE MEANbias 

 
R2 RMSE MEANbias 

M-NDVI (1 km2) 0.68 4.448 0.57 

 

0.7 4.296 0.55 

M-EVI (1 km2) 0.67 4.299 1.04 

 

0.68 4.169 1.01 

L-NDVI (mean value in 1 km2) 0.75 3.92 0.59 
 

0.75 3.85 0.57 

 

Table.3 Comparison of remote sensing based GPP estimation with in-situ measurement carbon flux data in flux tower in 16-day 

temporal scale. Here the M-NDVI and M-EVI represented for GPP estimation results from the 1-km MODIS based vegetation index 

product input. L-NDVI represented GPP estimation results from the 30-m resolution LANDSAT NDVI resampled to the same region 

in 1-km MODIS data input. 16day-FLUX is using the in-situ measurement meteorology data as input, while 16day-ERA using 

reanalysis meteorology data as input data for GPP estimation (RMSE and MEANbias in gC/m2/day). 

  16day-FLUX 
 

16day-ERA 

 
R2 RMSE MEANbias 

 
R2 RMSE MEANbias 

M-NDVI(1 km2) 0.7 4.357 0.57 

 

0.71 4.228 0.55 

M-EVI(1 km2) 0.68 4.211 1.04 

 

0.69 4.107 1.01 

L-NDVI(mean value in 1 km2) 0.76 3.8 0.6 

 

0.76 3.767 0.58 

 

1 MEANbias is mean modeled GPP minus mean flux tower measurement GPP. 
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4. DICUSSION AND CONCLUSION 

In this study, we estimated GPP with high spatial 

resolution and high temporal frequency meteorology data in 

cropland area. This study evaluated GPP estimation accuracy 

influenced by three major aspects of data input, including: i) 

different spatial scale remote sensing vegetation index input 

like 30-m resolution Landsat NDVI, 1-km resolution MODIS 

NDVI; ii) different frequency meteorology data input in GPP 

model like daily, 8-day, 16-day; iii) different source of data 

input for GPP estimation like flux tower based data input and 

ERA reanalysis data input. Results elucidated that GPP 

estimation with high spatial resolution remote sensing NDVI 

(Landsat based 30-m NDVI) and daily ERA reanalysis 

meteorology data input has the highest correlation with in-situ 

measurement GPP data in cropland area (R2=0.85, 

RMSE=2.99). 

In the spatial scale, estimating GPP with high spatial 

resolution data like 30-m Landsat NDVI, has the higher 

estimating accuracy than using 1-km MODIS NDVI as input. 

Because high spatial resolution data have higher representative 

of land surface vegetation growing condition than low 

resolution data. New generation satellite based remote sensing 

data provided different spatial resolution of vegetation 

information like GaoFen in 10-m (Zhao et al, 2018), 

Sentinel-2a in 16-m (Battude et al,2016), VIIRS in 500-m 

(Justice et al,2010), all of these can be applied to remote 

sensing GPP estimation models. So the further remote sensing 

based GPP products can use the high spatial resolution 

information as import.      

In the temporal scale, evaluating GPP with daily 

meteorology data input and Landsat based high spatial 

resolution vegetation information has highest accuracy. 

Because high frequency weather data input changes the stress 

for vegetation growing then tracking vegetation production 

variation. However, only geostationary satellites and 

meteorology reanalysis dataset provide high frequency land 

surface weather condition data (Bessho et al,2016). In section 

3.1, geostationary images not have very high estimation 

correlation between in-situ measurement meteorology data. 

Some research found that the atmosphere and BRDF correction 

of geostationary need to have further improvement so it has 

high frequency data as the GPP model input (Bessho et 

al,2016 ,Hilker et al, 2008). 

Remote sensing based GPP estimation accuracy 

influenced by model parameters input: vegetation index input 

like NDVI, EVI; in-situ measurement or reanalysis 

meteorology input. In this study, we found that estimating GPP 

with NDVI and ERA based reanalysis data have the best 

performance in MOD17 GPP model. But it needs to have more 

research on other models like VPM (Xiao et al,2005; Dong et al, 

2016), BESS(Jiang et al, 2016) etc.  

Estimating GPP with high spatial and temporal remote 

sensing based data can improve its accuracy, which would be a 

potential way to improve crop production in large scale 

cropland region.  
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