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ABSTRACT: 

 

Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting 

change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from 

different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, 

difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model 

(GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness 

of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by 

Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change 

from different sensors. 

 

 

* Correspondence: yangj@whu.edu.cn 

1. INTRODUCTION 

Due to the all-time and all-weather mapping capability of 

synthetic aperture radar (SAR), which is independent of, for 

instance, cloud cover, night-time, and severe weather, change 

detection of SAR has played an important role in the 

understanding of the relationships and interactions between 

people and natural phenomena in recent years (Bruzzone, 2013;  

Hachicha, 2014; Singh, 1989). Change detection with SAR 

images has been used in applications such as disaster 

monitoring ( Conradsen, 2003; Giustarini, 2013), ecological 

monitoring (Zhao, 2014; Zhao, 2016), regulatory policy 

development (Sun, 2016; Zhao, 2013), and environmental 

impact assessment (Zhao, 2014). The Chinese Gaofen-3 (GF-3) 

satellite was launched on 10 August, 2016.It is the first multi-

polarization SAR imaging satellite to be developed in China 

and it has promoted research into change detection based on 

SAR images(Sun, 2017).Meanwhile, full polarimetric synthetic 

aperture radar (PolSAR) data contain both phase and amplitude 

information from radar returns transmitted in two different 

polarizations, signifying that more scattering information can be 

used for change detection(Zhao, 2017). Therefore, many 

researchers have focused on change detection using bi-temporal 

PolSAR images (Liu, 2014; Moser, 2006; Sumaiya, 2016). 

 

Although the traditional pixel-based unsupervised change 

detection method using bi-temporal PolSAR images can detect 

the change between two different times with same sensor 

(Akbari, 2016), they could not detect the total changes of the 

entire time series from different sensors (Conradsen, 2016). To 

solve these problems, some researchers simply compared the 

pair-wise images in the time-series images and detected the 

time-series change, which suffers from some deficiencies, such 

as it is time-consuming and couldn’t detect some small 

continuous changes (Conradsen, 2016). When analyze the 

difference images, traditional methods such as two-dimensional 

entropic segmentation (TDES) algorithm  (Jansing, 1999), 

Otsu’s algorithm (Otsu, 1975), improved K&I algorithm (Zhao, 

2017) and Kapur entropy algorithm (Yetgin, 2012) and so on, 

assume the probability density function (PDF) of the difference 

image complies with the Gaussian distribution. While the 

difference images calculated by ominous statistic test and Rj 

statistic test algorithm are not complies with the Gaussian 

distribution (Conradsen, 2016). In consequence, traditional 

algorithm is not suitable for the analysis of difference image 

which obtained by ominous or Rj statistic test algorithm. 

Fortunately, Gaussian mixture models (GMM) can fit any 

distribution of data (Rasmussen, 2000). In our previous work 

(Liu, 2017), by improving the GMM algorithm, it can better 

adapt to the analysis of difference image.  

 

Focusing on above problems, a method (named OS_GMM) of 

time series change detection using full PolSAR images from 

different sensors is proposed in this paper. OS_GMM integrates 

the respective advantages of the omnibus test (Conradsen, 2016) 

and generalized GMM (Liu, 2018) techniques. The proposed 

method should not be regarded as a combination of many 

methods but as a fully unified algorithm with different steps. In 

this method, the use of the omnibus statistic is an effective 

strategy for obtaining the difference images from PolSAR time-

series images, and we use the generalized GMM algorithm to 

help us to choose the threshold of change detection map. 

 

2. METHODOLOGY 

2.1 Omnibus Test 

The omnibus statistic test algorithm effectively utilizes 

polarimetric and temporal information from time-series PolSAR 

images. The PolSAR image includes the backscattering 
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coefficients of the four polarimetric channels of the object 

(Conradsen, 2003). For orthogonal polarizations basis, the 

scattering information of ground objects can be represented by 

the following covariance matrix C: 
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Different elements in covariance matrix C represent the 

backscattering coefficients. For the multi-look conditions, the 

covariance matrix C of PolSAR image obeys the complex 

Wishart distribution ( ( , , )XX W p n  ) and probability 

density functions (PDF) of C can be described as follows.  

 

1

( 1)/2

1

1 1
( ) exp{ [ ]}

( )

( ) ( 1)

n p

Cn

n C

p
p p

p

j

f C C tr C
p

n n j

 





  
 

    

 (2) 

 

Where, ( )tr   is the trace of covariance matrix C, n is the number 

of look of PolSAR image, and p represents the dimension of 

matrix C. For fully PolSAR image, p is equals to 3 (Conradsen, 

2016). 

 

Assuming that the multi-parameters 

1 2 1
, ,... , ,...

j j kX X X X X
     of time-series ( 1 2 kt t t   ) 

PolSAR images are independent, and they obey the complex 

Wishart distribution:  
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where p represents the dimension of 1 2, , kX X X... , 

1 2, , kn n n... is the number of look of 1 2, kX X X,...  , 

and
1 2
,

kX X X  ,... represent the scattering matrix 

of 1 2, kX X X,... .  

 

According to omnibus statistic test theory, 0H hypothesis can 

be described as 
1 2 10 : ... ...

j j kX X X X XH


          , which 

means the matrixes of time-series PolSAR images are equal. In 

other words, if 0H hypothesis were the case, the feature has not 

changed in the time interval [ 1t , kt ]. On the contrary, the 

feature has at least one change in the time-series [ 1t , kt ] of 

PolSAR images. 

 

Supposing that the omnibus statistic test based on maximum 

likelihood estimation (MLE) has a joint 

density
1 2

( , ... , )
kX X Xf    , where   is the set of parameters of 

the probability function that has generated the data. 0H states 

that 0H  , and the likelihood ratio of the omnibus statistic 

test is shown as follows:   
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where, 
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If 1 2 kn n n n    , this leads to the desired 

likelihood-ratio omnibus statistic test: 
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 , i iX n C    and Equation (6) in logarithm form as 

follows: 
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In general, the overall similarity of time-series PolSAR images 

is measured by lnQ . The larger the value, the greater the 

probability that change will generally occur in time-series 

PolSAR images.  

 

2.2 Rj Statistic Test 

The omnibus statistic test algorithm can be used to detect the 

overall change of the time-series PolSAR images, but it is 

limited to detecting the change between two any different times. 

To compensate for the shortcoming of omnibus statistic test, 

Conradsen et al. (Conradsen, 2016) formulated the jR  statistic 

test algorithm, which is used to generate the different images 

between any two images in different times (Conradsen, 2016). 

 

According to jR  statistic test, if the matrixes of any two 

different PolSAR images in time are equal ( 10 :
j jX XH


   ), it 

indicates that there is no change in the time interval 

[ 1jt  , jt ]. Instead, if the matrixes are not equal 

( 11 :
j jX XH


   ), the change happens between the two images. 

According to jR  statistic test, the likelihood ratio of the 

statistic can be shown as follows:  
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Equation (8) in logarithm form is as follows: 
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Similarly, the similarity of PolSAR images from two any 

different times is measured by jlnR . The larger the value, the 

greater the probability that change will occur between the two 

images. 

  

2.3 The Generalized Gaussian Mixture Model (GGMM) 

and Expectation Maximization (EM) 

The GMM (Rasmussen, 2000) is an unsupervised statistical 

learning approach that is widely used in statistical pattern 

recognition. The GMM can represent an arbitrarily complex 

PDF and is suitable to fit an unknown data distribution of the 

difference images. The finite GMM with k components can be 

calculated as: 
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where, m represent the mixing probabilities of the mth 

component, which must be positive and sum to one; k are the 

means; 
2

k  are the variances; and ( | )mp x   is a normalized 

Gaussian with specified mean and variance. 

 

In general, the distribution of difference image ( ( )dp x ) can be 

modeled as a weighted sum of two distributions. One represents 

the ’changed’ class and another represents ’unchanged’ class 

data distributions (Celik, 2011), i.e.  
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where d u( w )p x  and d( w )cp x are posteriori PDFs, 

and ( )cp w and ( )up w are priori probabilities of 

classes uw and cw , respectively. The data 

distribution ( )dp x can also be modeled using the k-component 

GMM (Zivkovic, 2004), i.e. 

 

 

where ( )p k is the prior probability of the data point having 

been generated from component n of the mixture, and d(x )p k  

is the nth component density modeled with a Gaussian density 

function. The data distribution modeled with Equation (11) can 

be separated into two distributions representing the data 

distributions of the ’changed’ and ’unchanged’ classes. 

 

In order to estimate  , it is usual to introduce the log-

likelihood function defined as shown in Equation (13): 
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The EM algorithm is an iterative method used to find the 

maximum likelihood or the maximum a posteriori estimates of 

the components in the GMM (Dempster, 1977). The EM 

iteration alternates between performing an expectation (E) step 

and a maximization (M) step. The E-step creates a function for 

the expectation of the log-likelihood evaluated using the current 

estimate for the parameters: 
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The M-step computes the parameters maximizing the expected 

log-likelihood found in the E-step. 
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We update the parameter estimation according to Equation (16): 
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The EM algorithm of the criterion of convergence is defined as: 

 
ˆ- (t)    (18) 

 

For a certain class of traditional GMM algorithm, there is an 

important parameter commonly referred to as K that specifies 

the number of components to detect (Liu, 2017). However, the 

correct choice of K is often ambiguous. Fortunately, it can 

avoid the use of empirical methods for the selection of the 

number of components for the GMM and find the optimal 

number of components K in our previous work (Liu, 2017). 

 

2.4 The Proposed Method of Time-Series Change Detection 

Using Images from Different Sensors  

The procedure of time-series unsupervised change detection 

based on different sensors is shown as Figure 1. 
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Figure 1. The process flow of the proposed method. 

 

The process of change detection includes, 1) Data preprocessing, 

including radiation correction, geometric correction, co-

registration and filtering. 2) Calculating the overall difference 

image of a time-series image by ominous statistic test and 

acquiring the difference images between any two images in 

different times by jR  statistic test. 3) Modeling the difference 

images by GGMM model, obtaining the statistic distribution of 

changeable and non-changeable classes. 4) Making decision 

analysis according to formula (19) and calculating the change. 

  

255, ( ) ( | ) ( ) ( | )
(i, j)

0,otherwise

u u c cp w p x w p w p x w
CD


 


 (19) 

 

where, ‘0’ represents non-changeable class and ‘255’ represents 

changeable classes. 

 

3.  EXPERIMENTS AND RESULTS 

3.1 Study Area and Background 

Wuhan (as shown in Figure 2) lies East Longitude 113°41′-

115°05′, North Latitude 29°58′- 31°22′, and it is the only 

megalopolises in the China West. Wuhan is known as ‘River 

City’ because the third largest river (Yangtze River) in the 

world and the largest tributary of the Yangtze River (Han River) 

across this city and many lakes were formed, such as East Lake, 

LiangZi Lake and so on. Dramatic changes have taken place in 

the city of Wuhan during the ‘Twelfth Five-Year Plan’ period 

(from 2011 to 2015). In order to detect the dramatic changes of 

city, time-series PolSAR images were acquired by Radarsat-2 

and GF-3 sensors. In this study, our aim was to detect the 

dramatic changes of city and monitor the changes associated 

with the tunnel construction on East Lake. 

 

 

 

Figure 2. Location of the study area. 

 

The preprocessing of PolSAR time-series images is important 

for change detection. In this study, the preprocessing consisted 

of radiometric calibration, speckle filtering, geometric 

correction and image co-registration. After the radiometric 

calibration, the pixel values of the PolSAR time-series images 

from different sensors are directly related to the radar 

backscatter of the scene. This condition is necessary for the 

comparison of PolSAR images acquired at different dates. 

Speckle filtering and image co-registration were also performed. 

From 2011 to 2017, construction of a new tunnel and its 

ancillary buildings took place on East Lake in Wuhan, China. 

After the new tunnel constructed, the ancillary buildings were 

removed in 2016. The land-cover types of this area are lake, 

bridge, city, and forest. PolSAR images acquired by Radarsat-2 

and GF-3 sensors display the changes associated with the 

construction of the new tunnel on East Lake and the RGB 
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images(1200 rows, 1000 columns) in Pauli basis ( | |hh vvS S  

for red, | |hvS  for green, and | |hh vvS S  for blue) are shown in 

Figure 3. 

   
(a) (b) (c) 

  

 

(d) (e)  

 

Figure 3. RADARSAT-2 PolSAR images acquired on (a) 

December 07, 2011. (b) June 25, 2015. (c) July 6, 2016; and 

GF-3 PolSAR images acquired on (d) April, 30, 2017. (e) 

May, 29, 2017. 

 

The validity of the proposed algorithm applied to different 

sensors is verified in this part. OS_GMM method was used to 

detect the change in the construction process of East Lake 

Tunnel. Dramatic changes have taken place around East Lake 

from 2011 to 2017 and the changes of different period over East 

Lake are shown in Figure 4. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

 

  

(j)   

 

Figure 4. Time-series change detection over tunnel of East Lake 

from 2011 to 2017(a) between December, 2011 and June, 

2015.(b) between December, 2011 and July, 2016.(c) between 

June, 2015 and July, 2016.(d) between December, 2011 and 

April, 2017.(e) between June, 2015 and April, 2017.(f) between 

July, 2016 and April, 2017.(g) between December, 2011 and 

May, 2017.(h) between June ,2015 and May, 2017.(i) between 

July ,2016 and May, 2017.(j)between April, 2017and May, 

2017. 

 

To give a visual impression of the results, Figure 4 shows the 

time-series change detection results over the East Lake tunnel 

from 2011 to 2017. Figure 4a shows the change detection result 

from December 2011 to June 2015, where the changes reflect 

the construction of the new tunnel and urbanization. Figure 4b 

shows the change detection result from 2011 to 2016, where the 

changes again reflect the construction of the new tunnel and 

urbanization. Figure 4c shows the change detection result from 

June 2015 to July 2016, where the changes reflect the removal 

of the ancillary buildings and urbanization. Figures 4d and 4g 

show the change detection result from December 2011 to April 

2017 and from December 2011 to May 2017, where the changes 

reflect the urbanization. Figures 4e and 4h show the change 

detection result from December 2011 to April 2017 and from 

June 2015 to May 2017, respectively, where the changes reflect 

the removal of the ancillary buildings and urbanization. Figures 

4f and 4i show the change detection result from July 2016 to 

April 2017 and from July 2016 to May 2017, where the changes 

reflect the removal of ancillary buildings. Figure 4j shows the 

change detection result from April 2017 to May 2017, where 

few changes can be observed. 

 

4. CONCLUSIONS 

Most of existing unsupervised change detection methods using 

PolSAR images are limited to detecting change between two 

points in time, in this paper, omnibus statistic test algorithm is 

designed to detect the change over the entire time period, and Rj 
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statistic test is used to detect changes in different time interval.  

The proposed approach is based on automatic generation of the 

different images using an omnibus statistic and a statistical 

clustering approach. The omnibus statistic is a good strategy for 

obtaining the difference images from time series PolSAR 

images from different sensors. Using the proposed method, we 

were able to accurately detect the changes associated with the 

construction of a tunnel on East Lake from 2011 to 2017, 

dramatic changes in the city of Wuhan during ‘Twelfth Five-

Year Plan period’. The experimental results indicates that the 

proposed method can detect changes in a series of images from 

Radarsat-2 and GF-3 sensors. However, some further 

improvements are still necessary in future. For example, the 

results of change detection are easy affected by the speckle 

noise when use PolSAR images, and the method may be time-

consuming to arrive at the convergence criterion in this paper. 

 

ACKNOWLEDGEMENTS 

The authors would like to thanks the National Natural Science 

Foundation of China, No. 91438203, No. 61371199, No. 

41501382, No.41601355; Public Welfare Project of Surveying 

and Mapping Interest (201412002); Hubei Provincial Natural 

Science Foundation (No. 2015CFB328, No.2016CFB246); 

National Basic Technology Program of Surveying and Mapping 

(No. 2016KJ0103); Technology of target recognition based on 

GF-3(No. 03-Y20A10-9001-15/16).  

 

REFERENCES 

Akbari, V.; Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T.; Moser, G.; 

Serpico, S.B. Polarimetric SAR Change Detection With the 

Complex Hotelling–Lawley Trace Statistic. IEEE Trans. Geosci. 

Remote Sens. 2016, 54, 3953–3966. 

 

Bouyahia, Z.; Benyoussef, L.; Derrode, S. Change detection in 

synthetic aperture Radar images with a sliding hidden Markov 

chain model. J. Appl. Remote Sens. 2008, 2, 513–526. 

 

Bruzzone, L.; Prieto, D.F. A minimum-cost thresholding 

technique for unsupervised change detection. Int. J. Remote 

Sens. 2000, 21, 3539–3544. 

 

Bruzzone, L.; Bovolo, F. A novel framework for the design of 

change-detection systems for very-high-resolution remote 

sensing images. Proc. IEEE. 2013, 101, 609–630. 

 

Bunch, J.R.; Fierro, R.D. A constant-false-alarm-rate algorithm. 

Linear Algebr Appl. 1992, 172, 231–241. 

 

Carincotte, C.; Derrode, S.; Bourennane, S. Unsupervised 

change detection on SAR images using fuzzy hidden Markov 

chains. IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. 

 

Celik, T.; Ma, K.-K. Multitemporal Image Change Detection 

Using Undecimated Discrete Wavelet Transform and Active 

Contours. IEEE Trans. Geosci. Remote Sens. 2011, 49, 706–

716. 

 

Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test 

statistic in the complex wishart distribution and its application 

to change detection in polarimetric SAR data. IEEE Trans. 

Geosci. Remote Sens. 2003, 41, 4–19. 

 

Conradsen K, Nielsen A A, Skriver H. Determining the points of 

change in time series of polarimetric SAR data. IEEE 

Transactions on Geoscience and Remote Sensing, 2016, 54(5): 

3007-3024. 

 

Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood 

from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. 

B (Methodol.) 1977, 39, 1–38. 

 

Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.-P.; 

Bates, P.D.; Mason, D.C. A change detection approach to flood 

mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. 

Remote Sens. 2013, 51, 2417–2430. 

 

Goutte, C.; Toft, P.; Rostrup, E.; Nielsen, F.; Hansen, L.K. On 

clustering fMRI time series. Neuroimage 1999, 9, 298–310. 

 

Hachicha, S.; Chaabane, F. On the SAR change detection 

review and optimal decision. Int. J. Remote Sens. 2014, 35, 

1693–1714. 

 

Inglada, J.; Mercier, G. A new statistical similarity measure for 

change detection in multitemporal SAR images and its 

extension to multiscale change analysis. IEEE Trans. Geosci. 

Remote Sens. 2007, 45, 1432–1445. 

 

Jansing, E.D.; Albert, T.A.; Chenoweth, D.L. Two-dimensional 

entropic segmentation. Pattern Recognit. Lett.1999, 20, 329–

336. 

 

Moser, G.; Serpico, S.B. Generalized minimum-error 

thresholding for unsupervised change detection from SAR 

amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 

2972–2982. 

Liu, M.; Zhang, H.; Wang, C.; Wu, F. Change detection of 

multilook polarimetric SAR images using heterogeneous clutter 

models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7483–

7494. 

 

Liu W, Yang J, Zhao J, et al. A Novel Method of Unsupervised 

Change Detection Using Multi-Temporal PolSAR Images. 

Remote Sensing, 2017, 9(11): 1135. 

 

Liu W, Yang J, Zhao J, et al. An Unsupervised Change 

Detection Method Using Time-Series of PolSAR Images from 

Radarsat-2 and GaoFen-3. Sensors, 2018, 18(2): 559. 

 

Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-

level picture thresholding using the entropy of the histogram. 

Comput. Vis. Graph. Image Process. 1985, 29, 140. 

 

Ketchen, D.J., Jr.; Shook, C.L. The application of cluster 

analysis in strategic management research: An analysis and 

critique. Strateg. Manag. J. 1996, 17, 441–458. 

 

Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern 

Recognit. 1986, 19, 41–47. 

 

Muro J, Canty M, Conradsen K, et al. Short-term change 

detection in wetlands using Sentinel-1 time series[J]. Remote 

Sensing, 2016, 8(10), 795. 

 

Otsu, N. A threshold selection method from gray-level 

histograms. Automatica 1975, 11, 23–27. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1127-2018 | © Authors 2018. CC BY 4.0 License.

 
1132



Pham, M.-T.; Mercier, G.; Michel, J. Change Detection between 

SAR Images Using a Pointwise Approach and Graph Theory. 

IEEE Trans. Geosci. Remote Sens. 2016, 54, 2020–2032. 

 

Rasmussen, C.E. The infinite Gaussian mixture model. Adv. 

Neural Inf. Proc. Syst. 2000, 10, 554–560. 

 

Stehman, S.V. Selecting and interpreting measures of thematic 

classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. 

 

Singh, A. Review Article Digital change detection techniques 

using remotely-sensed data. Int. J. Remote 1989, 10, 989–1003. 

 

Sumaiya, M.; Kumari, R.S.S. Logarithmic Mean-Based 

Thresholding for SAR Image Change Detection. IEEE Geosci. 

Remote Sens. Lett. 2016, 13, 1726–1728. 

 

Sun J, Yu W, Deng Y. The SAR payload design and 

performance for the GF-3 mission. Sensors, 2017, 17(10): 2419. 

 

Sun, W.; Shi, L.; Yang, J.; Li, P. Building Collapse Assessment 

in Urban Areas Using Texture Information From Postevent SAR 

Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 

3792–3808. 

 

Yang, W.; Yang, X.; Yan, T.; Song, H.; Xia, G. Region-Based 

Change Detection for Polarimetric SAR Images Using Wishart 

Mixture Models. IEEE Trans. Geosci. Remote Sens. 2016, 54, 

6746–6756. 

 

Yetgin, Z. Unsupervised change detection of satellite images 

using local gradual descent. IEEE Trans. Geosci. Remote Sens. 

2012, 50, 1919–1929. 

 

Yousif, O.; Ban, Y. Object-Based Change Detection in Urban 

Areas Using Multitemporal High Resolution SAR Images with 

Unsupervised Thresholding Algorithms; Multitemporal Remote 

Sensing; Springer: Berlin, Germany, 2016,45, 89–105. 

 

Zhao, J.; Yang, J.; Lu, Z.; Li, P.; Liu, W.; Yang, L. A Novel 

Method of Change Detection in Bi-Temporal PolSAR Data 

Using a Joint-Classification Classifier Based on a Similarity 

Measure. Remote Sens. 2017, 9, 846. 

 

Zhao, J.Q.; Yang, J.; Li, P.X.; Liu, M.Y.; Shi, Y.M. An 

Unsupervised Change Detection Based on Test Statistic and KI 

from Multi-temporal and Full Polarimetric SAR Images. Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-

B7, 611–615. 

 

Zhao, J., et al., An Unsupervised Method of Change Detection 

in Multi-Temporal PolSAR Data Using a Test Statistic and an 

Improved K&I Algorithm. Applied Sciences, 2017. 7(12): p. 

1297. 

 

Zhao, L.; Yang, J.; Li, P.; Zhang, L. Characteristics Analysis and 

Classification of Crop Harvest Patterns by Exploiting High-

Frequency MultiPolarization SAR Data. IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens. 2014, 7, 3773–3783. 

 

Zhao, L.; Yang, J.; Li, P.; Zhang, L. Seasonal inundation 

monitoring and vegetation pattern mapping of the Erguna 

floodplain by means of a RADARSAT-2 fully polarimetric time 

series. Remote Sens. Environ. 2014, 152, 426–440. 

 

Zivkovic, Z. Improved adaptive Gaussian Mixture Model for 

Background Subtraction. In Proceedings of the IEEE 17th 

International Conference on Pattern Recognition, Cambridge, 

UK, 26 August 2004. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1127-2018 | © Authors 2018. CC BY 4.0 License.

 
1133




