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ABSTRACT: 

 

Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the 

ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the 

carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating 

global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological 

environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. 

Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each 

month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely 

sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in2006- 

2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described 

in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed 

NDVI has been greatly improved. The results show that:(1) The NPP calculated from the new normalized vegetation index (NDVI) 

obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these 

two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP 

have a certain relationship with precipitation. 
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1. INTRODUCTION 

As an important part of the global carbon cycle, terrestrial 

ecosystems are the major forces that absorb free carbon from 

the atmosphere and convert it into organic compounds 

(Vitousek, P.,M.,1997;Post, W.M.,1990). Grassland, as one of 

the most widely distributed ecosystems in terrestrial ecosystems, 

plays an important role in climate regulation and the global 

carbon cycle (Pu SL.,2004). Net primary productivity (NPP) 

refers to the total amount of organic matter accumulated by a 

plant in unit time and unit area. It is the total amount of organic 

matter produced by plant photosynthesis minus the respiration 

consumption. It also reflects the response of terrestrial 

ecosystems. And important parameters of global climate change 

(Chen LJ., 2002; Wo X., 2014; Chen Q., 2014; Zhang JC.,2015). 

NPP can be accurately obtained through field measurements, 

and model estimation is an effective method for regional or 

larger scale. Previous studies have proposed a large number of 

models (Cramer W.,1999), and along with remote sensing, 

satellite data development models have been widely used in the 

research of terrestrial NPP. The popularity of satellite data 

models is due to the fact that remote sensing images can provide 

continuous, dynamic, and comprehensive surface information 

for any region of the globe (Prince SD.,1995; Sellers P.,1995). 

Satellite coverage data and spectral vegetation index products (ie 

normalized difference vegetation index, NDVI) are the most 

commonly used core data for modeling large areas of 

NPP(Cramer W.,1999). 

 

In the study of regional carbon cycle based on satellite data 

model, the quantity and quality of remote sensing data are the 

decisive factors for major and in-depth analysis. MODIS data 

sets with a spatial resolution of 250 meters to 1 kilometer have 

been applied to the spatio-temporal changes and potential 

factors of NPP in many research areas (Ciais P.,2014; Guo, 

Q.,2017). Although these studies have captured the spatial 

information of NPPs, they cannot analyze NPP changes and 

their relationship with environmental factors for a long time. 

Only data covers the data of the past decade, and no data were 

available before 2000. The same limitations exist in the research 

of SPOT vegetation products (Zhang R.,2017). Research using 

Landsat data can provide more detailed spatial information, but 

due to the poor temporal resolution and cloud coverage, it is 

difficult to obtain continuous long-term sequences  (Guan 

X.,2015). Since the 1980s, AVHRR datasets have been widely 

used for long-term regional NPP studies (Gitelson AA.,2012), 

but because of their spatial resolution of 8 km, they have been 

commonly used in larger regions. In addition, in many papers it 

has been demonstrated that, due to the spatial heterogeneity of 

the data, coarse resolution can lead to significant loss of 

precision in the simulation of NPP. In general, further studies of 

the regional carbon cycle are limited by the mutual inhibitory 

properties of different sensors. Therefore, the key challenge in 

using remote sensing measurements in regional NPP research is 

to achieve long-term consistency and accuracy. Integrating 

remote sensing data from different sensors and synthesizing 

their respective advantages is the only way to solve the problem 

(Cheng Q.,2016). 
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2. STUDY AREA AND DATA 

2.1 Overview of the study area 

The Xinjiang Uygur Autonomous Region, located between 34°

22′~49°33′N and 73°32′~96°21′E in northwest 

China, was selected as the study area (Figure 1). The total area 

of the Xinjiang Uygur Autonomous Region is about 1.66 million 

square kilometers, and the mountainous landforms account for 

more than 90%. Due to the special geographical location, 

topographic conditions and the effects of arid climate, 

Xinjiang’s ecological environment is extremely fragile, with rare 

plant species, low coverage, and simple types and structures. 

Xinjiang grasslands are mainly distributed in Tianshan, Altai 

Mountains, and Kunlun Mountains.The Altun Mountains and 

Junggar Basin, the edge of the Tarim Basin and the banks of the 

rivers. The area of grassland is 15 times that of cultivated land 

and it is forest 22 times the forest area, accounting for 86% of 

the area's green vegetation. The vast plains and low mountains in 

Xinjiang show vast desert landscapes. The desert vegetation 

formed under the influence of geographical environment and 

bio-climate is the main body of Xinjiang and accounts for more 

than 42% of Xinjiang’s land area.(Yang HF,2014)  

 
Figure 1.Location of the area 

 

2.2Data and Processing 

The third generation (GIMMS3g) NDVI product of the global 

inventory modeling and cartographic research was selected as a 

basis to comprehensively use NOAA/AVHRR and MODIS 

monthly NDVI acquisition (MOD13A3) as a basis, and a 10-

year NDVI time series was combined at a scale of 1 km. The 

GIMMS3g data set from 2006 to 2015 was obtained from the 

National Aeronautics and Space Administration (NASA). The 

data set has a spatial resolution of 8 km and a time interval of 

two weeks. Compared with other AVHRR-based NDVI 

products, this data set has better usability and quality (Beck 

HE,2011). The MOD13A3 acquisition data from 2006 to 2015 

was obtained from the NASA Earth Observing System (EOS) 

project with a spatial resolution of 1 km. These data are mainly 

used to study vegetation and land surface, and have been widely 

used in numerous vegetation studies (Pei F,2013). In this study, 

the monthly maximum GIMMS3g NDVI was obtained using a 

maximum synthesis (MVC) technique to match the MODIS 

data interval. 

 

The vector data used include the Xinjiang Uygur Autonomous 

Region boundary map and the 1:100 million China Vegetation 

Atlas. Among them, the boundary map of the Xinjiang Uygur 

Autonomous Region is the Albers projection, a geodetic 

coordinate system, used to crop vector and raster data. The 

1:100 Million China Atlas of Vegetation was digitized by the 

Chinese Academy of Sciences in 2007 and published in 2001 

"Atlas of 1:1 Million Chinese Vegetation" digitized, then 

projected, matched, splice, and finally attributed, and was the 

medium-scale vegetation of the international scale. Illustration. 

This data is an Albers projection. This data can fully reflect the 

main vegetation types and their geographical distribution in 

China. This article is used by the National Natural Science 

Foundation of China's “Environmental and Ecological Science 

Data Center in Western China” (http://westdc.westgis.ac.cn). 

The data used for spatial values of temperature and precipitation 

in this study is from the China Meteorological Data Network 

(http://data.cma.gov.cn/). The time series is from July 2006 to 

2016, including 108 weather stations in Xinjiang. Temperature 

and precipitation data, as well as longitude, latitude, and 

elevation of each site. The data was checked for accuracy, 

discontinuity data, error data, and redundant data were 

discarded. Finally, 90 stations were used to perform spatial 

interpolation. Based on this, the average July precipitation and 

air temperature at each site were calculated. 

 

3. RESEARCH  METHOD 

3.1 Remote Sensing Data Fusion Method 

The application of NDVI time series data is usually caused by 

noise and errors caused by cloud and other atmospheric 

pollution. In order to obtain high quality NDVI time series, 

mobile weighted harmonic analysis (MWHA) method is used to 

correct the error values in MODIS NDVI and GIMMS3g data 

sets. After filtering, the displayed NDVI time series is closer to 

the actual vegetation change curve. 

For the MDIS NDVI and GIMMS3g data, it can be seen that 

there is a large difference between NDVI between the two 

sensors, which may be due to the inconsistent characteristics of 

the two sensors and the lack of atmospheric correction of the 

GIMMS3g data（Steven MD.,2003; Gan W.,2014)Fensholt and 

Proud concluded that since the time trend of GIMMS NDVI 

acquisition is generally the same as that of MDIS NDVI data 

(Fensholt R.,2012), a one-dimensional linear regression 

normalization model can be used to express the relationship 

between two data sets. 

 

Although the differences between the different sensors are 

reduced, there is a difference in the spatial resolution between 

the obtained MODIS NDVI and GIMMS NDVI time series. 

Since the spatial resolution of GIMMS 3g data is too rough, it 

may lead to errors in the calculated NPP. Therefore, the method 

of multi-sensor fusion is an effective method to solve the spatial 

resolution of different data. In many vegetation studies, spatial 

and temporal adaptive reflectivity fusion models (STARFM) and 

extended STARFM (ESTARFM) have been applied to the 

integration and prediction of vegetation indices (Shen H et 

al ,2013; Schmidt M., 2012; Liu S., 2016) The STARFM model 

was used in this study to improve the spatial resolution of the 

data. 

 

Based on the STARFM model, MODIS NDVI data of time 

series was constructed by merging MOD13A3 and GIMMS3g 

data. This model uses one or two pairs of MODIS, GIMMS3g 

data at t0 and MODIS data at t1, and combines different spatial 

weights to calculate the MODIS data at time t1. The formula is 

as follows: 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-113-2018 | © Authors 2018. CC BY 4.0 License.

 
114



 

  (1) 

Where    L and M = the NDVI values of MODIS and GIMMS3g

 pixels 

W = the weight function 

   (xi,yi,t0 ) = a pixel at the position t0 (xi,yi) 

 (xi,yi,t1 ) = a pixel at position t1 (xi,yi) 

 (xw/2,yw/2,t1 ) = the center pixel of the moving window at

 time t1. 

 

3.2 CASA Model 

CASA (Carnegie-Ames-Stanford-Approach) model is one of the

 most common models in the light energy utilization model. This

 research uses the improved CASA model of Zhu WQ et al. (Zh

u WQ.,2005). The model study method is as follows: 

NPP(x,t)=Aapar (x,t)×ε(x,t)                          (2) 

Where    NPP(x,t) = the net primary productivity of cell x within 

t month 

Aapar (x,t) = the pixel x in month t 

ε(x,t) = the actual light energy utilization of pixel x in 

month t 

Based on Zhu WQ 's method, this paper uses MOD13A3 

product data, fused data, and grassland type data to calculate the 

NDVIi,min, NDVIi,max and SRi,min, SRi,max。The maximum 

and minimum values of NDVI and SR for different vegetation 

types are shown in Table 1.          

   

Grassland 

type 

NDVIi,max NDVIi,min SRi,max SRi,min  

Meadow 0.683 0.0356 5.3091 1.0487 

Plain 

grassland 

0.514 0.0356 3.1152 1.0487 

Desert 

grassland 

0.276 0.0356 1.7624 1.0487 

Alpine and 

Sub-alpine 

meadow 

0.558 0.0356 3.5249 1.0487 

Alpine and 

Sub-alpine 

plain 

grassland 

0.130 0.0356 1.2396 1.0487 

Table 1. The maxmum and minmum values of NDVI and SR in 

different vegetation type 

In the paper, according to Zhu WQ simulating the important 

algorithm of ε max of typical vegetation in China, different 

grassland species in Xinjiang region were added to simulate the

εmax of different grassland types in Xinjiang region. Different 

grasslands can be seen from Table 2. The εmax of the type is 

quite different, and theεmax of desert grassland and subalpine 

grassland is significantly lower than that of other grassland types, 

and is lower than theεmax maxsimulated by Zhu WQ .(Ren 

X.,2017). 

 

Grassland type max 

Meadow 0.575 

Plain grassland 0.485 

Desert grassland 0.131 

Alpine and Sub-alpine meadow 0.568 

Alpine and Sub-alpine plain grassland 0.087 

Tble 2. Maxmum Utilization Rate of Vegetation Type of Main 

Grassland in Xinjiang Region 

4. RESEARCH RESULTS 

 

4.1 Data Fusion Effect 

In order to verify the accuracy of the time series NDVI 

generated based on the STARFM model fusion MODIS data 

and GIMMS3g data, the 2015 NDVI data was merged using the 

MODIS NDVI data of July 2015 and GIMMS NDVI3g of the 

same time as the basis pairs. Comparison of real NDVI data 

during the period. Figure 2 shows the MODIS NDVI, GIMMS 

NDVI3g, and NDVI data based on STARFM model fusion over 

the same period. Compared with GIMMS NDVI3g data, the 

integrated NDVI data has significantly improved spatial 

resolution and more detailed spatial details. Compared with real 

MODIS NDVI data, spatial resolution and spatial information 

distribution trends are basically the same. 

 
（a）2015. 7GIMMS NDVI3g     （b）2015.7 MODIS NDVI    

 

             

（c）2015.7 Fusion NDVI 

Figure 2.Comparison of GIMMS NDVI3g、MODIS NDVI and 

Fusion NDVI in local areas 

 

4.2 Validation of the CASA M Validation of 

the CASA model odel 

In order to verify the accuracy, applicability and reliability of ap

plying the improved CASA model to Xinjiang grassland NPP es

timation results, the necessary verification was carried out for th

e estimated results. Usually, in the verification process, it is more

 common to compare the fitted data with the measured data, but

 there are few actual measured data in the Xinjiang region. There

fore, this article uses the relevant literature to compare the study 

with other similar research areas or Research results of scholars 

of different estimation models. As can be seen from Table 3, the 

data in this study is significantly lower than that of other researc
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hers. This is because this study only simulated the grassland NP

P in Xinjiang in July-Jul. 2006, while other scholars studied the a

nnual grassland NPP. There is a big gap. The results of Yang HF

(2014)research showed that the Xinjiang grassland NPP peaked i

n July and the average NPP between July and July 2000 was bet

ween 10 and 40 g C/(m2·a). Ren X (2017) studies showed that th

e NPP between 2000 and July 2012 The mean NPP is 50.93 g C/

(m2·a), which is similar to the present study. However, different 

scholars use different remote sensing models to calculate the res

ults are different, this may be due to the use of models, remote s

ensing data, research scales and other differences caused by. 

 

Table 3. Comparison of simulated NPP in the study and that by 

other different models 

 unit: g C/(m2·a) 

Based on the analysis of the above results, there are some errors 

in the simulation, but within the allowable range of error variatio

n, we believe that the results of the improved CASA model simu

lation can more reliably reflect the overall status of grassland NP

P in Xinjiang, which has a certain degree of influence on Xinjian

g grassland NPP. The value and estimation result also have high 

accuracy, so this model can be used to estimate grassland NPP i

n Xinjiang. 

4.3 NPP spatial distribution and change 

trend 

Univariate linear regression was used to analyze the NPP time 

series evolution trend of grassland pixel by field in July 2006 to 

July 2015, and the distribution of grassland NPP in Xinjiang was 

obtained. 

 

From July 2006 to July 2015, the grassland NPP in Xinjiang 

showed a slow and fluctuating overall growth (Figure 3). The 

average NPP ranged from 27.129 to 37.256 g C/(m2·a), and the 

average NPP over this 10-year period was 32.925 g C/(m2·a). In 

2007, 2011, and 2015, the monthly average of NPP was 35.786 g 

C/(m2·a), 34.406 g C/(m2·a), and 37.256 g C/(m2·a), respectively. 

The monthly average of NPP is 29.484 g C/(m2·a). Combined 

with the precipitation data from July 2006 to July 2015 (Figure 

4), it can be seen that the NPP of grassland NPP 2007 has also 

reached a peak in Xinjiang, and the precipitation in 2009 has 

significantly decreased compared with other years, and the 

corresponding grassland NPP also decreased in the same year. 

To the minimum, it can be seen that there is a certain 

relationship between NPP and precipitation in Xinjiang 

grasslands. 

   
Figure 3. Variability of NPP values in XinJiang grassland from 

2006to2015 

 

 

 
Figure 4.Average precipitation change in July 2006-2015 

 

The average monthly NPP of grassland vegetation in Xinjiang 

during the period from July 2006 to July 2015 was 32.93 g 

C/(m2·a). Based on the MODIS NDVI data, the spatial 

distribution of grassland vegetation NPP in Xinjiang from July 

2006 to July 2015 can be seen from Figure 5. Due to the 

influence of hydrothermal conditions, the spatial differences of 

NPP in grassland in different regions were obvious, showing the 

characteristics of high north and low in the south, high in the 

western region and low in the eastern region. This is due to the 

fact that the rainy waters in northern Xinjiang have more types 

of meadows and meadows than those in the southern part of 

China. In southern Xinjiang, there are few droughts in summer, 

and there are more deserts and grasslands in the desert. 

Therefore, the NPP in Xinjiang shows a clear northern Xinjiang 

has a higher distribution pattern than that of southern Xinjiang, 

with high west and low east. 

 
Figure 5.Spatial distribution of mean NPP in xinjiang grassland 

during 2006-2015 

Model Area Remote  

data 

Year Grass-

land 

NPP 

Refer-

ence 

OLECM Xinjiang  NOAA/ 

AVHRR 

1981-

2000 

215.21 Liu 

WG., 

2007 

BIOME 

-BGC 

Xinjiang  MOD17A3 2000-

2010 

145.6 Gao Y., 

2015 

CASA Xinjiang  MOD13A1 2000-

2010 

105.77 Yang 

HF., 

2014 

CASA Xinjiang  MOD13A3 2001-

2013 

243.7 Wu 

XQ., 

2016 

CASA Xinjiang  MOD13A1 2000-

2014/ 

July 

50.93 Ren X., 

2017 

CASA Xinjiang  MOD13A3 

&GIMMS3g 

2006-

2015/ 

July 

32.92 this  

research 
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5. DISCUSSION 

5.1 Effect  of  STARFM Model Parameter 

Adjustment on Results 

 

The parameters of the STARFM model have some influence on 

the quality of the fused image. The decision coefficient, root me

an square error, average absolute difference, and standard deviat

ion of the difference between the fused image and the reference i

mage change with the adjustment of the parameter, but the rang

e of change is limited. For a specific image, the number of classif

ications determines the threshold value when similar pixels are s

elected. The larger the number of classifications is, the more stri

ngent the conditions for selecting similar pixels are, and the fewe

r similar pixels exist in a particular window, the adjacent pixels t

hat can be used. The less the information, the less able to fully e

xpress the center pixel and reduce the accuracy of the result; but

 the small number of the classification will bring more misclassif

ication phenomenon, that is, the non-identical pixels are determi

ned as similar spectral pixels, which brings about error The infor

mation is expressed on the center pixel to reduce the accuracy o

f the result. 

5.2 Impact of Remote Sensing Image 

Accuracy on Results 

The accuracy of remote sensing images used in this study is not 

high enough. The MODIS product data set with 1000m resolutio

n, GIMMS3g dataset with 8000m resolution and grassland type 

map with 1000m are used in this paper. The temporal resolution 

and spatial resolution can be selected in future research. All the 

data are relatively high, and the geomorphological factors and re

mote sensing images should be taken into account to study the a

lgorithms that can be used to interpret the vertical grassland spec

ies in the arid region of Xinjiang, so as to improve the classificati

on accuracy of the grassland species in the study area and to esti

mate the grassland NPP in the study area. The model provides m

ore reliable basic data, which will be used to correct the relevant 

parameters for grassland NPP estimation in the research area. 

 

6. CONCLUSION 

This paper is based on remote sensing spatio-temporal fusion 

technology and CASA model to estimate the high spatial 

resolution NPP method, and researches the grassland net 

primary productivity in Xinjiang Uygur Autonomous Region 

from 2006 to 2015. It combines the advantages of GIMMS3g 

data and MODIS data to obtain innovative results. Fusion NDVI 

time series. The comprehensive evaluation shows that the 

estimated NPP after NDVI fusion is not consistent with the 

MODIS NDVI estimation, and can effectively improve the 

accuracy of NPP compared with GIMMS NDVI3g data. 

Experimental results show: 

(1) The time series NDVI obtained by the fusion model has a 

good effect and can be used in future NPP simulation and 

calculation; 

(2) Based on the merged time series NDVI and NMP based on 

GIMMS3g data, it has finer spatial information; 

(3) The improved CASA model can more reliably reflect the 

overall status of grassland NPP in Xinjiang. 

In addition, the validation data of NPP simulation estimation in 

this study is only through consulting the literature and 

comparing the differences between the previous scholars and 

my research. In the subsequent research, we will use a variety of 

methods to verify the reliability of NPP simulation values, such 

as field measurement data, etc. method. 
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