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ABSTRACT: 

 

Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. 

Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture 

applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and 

yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is 

needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant 

communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application 

still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, 

is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors 

(handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential 

disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed 

by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation 

indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-

based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-

based VIs such as the NGRDI with R2 values of 0.62.  

 

 

1. INTRODUCTION 

Grasslands are of global importance for providing ecosystem 

functions and services. Managed grasslands cover about twice 

the area of land under cultivation for arable crops (Ellis & 

Ramankutty 2008). Monitoring forage yield is of primary 

concern in managed grasslands for grazing, hay and silage 

production or biofuel production. Information on biomass and its 

spatial distribution within fields in high temporal and spatial 

resolution is an important step towards yield optimisation and 

nutrient balancing/budgeting as means of precision agriculture 

(PA) (Schellberg & Verbruggen, 2014). However, commonly 

applied manual measurement techniques of standing biomass 

such as clipping, disc or rising plate meters, or spectroradiometer 

measurements do not meet the requirements of a high resolution 

assessment of the in-field heterogeneity of standing biomass 

(Schellberg & Verbruggen, 2014). Analysing information of 

RGB images from consumer grade cameras mounted on 

unmanned aerial vehicles (UAV) can offer a cost efficient and 

near-real time assessment of forage yield with high temporal and 

spatial resolution (Hunt et al 2013).  

Vegetation indices derived from aerial RGB images to predict 

biomass in crops have been investigated in only a few studies 

(e.g. Bendig et al. 2015, Hunt et al. 2005, Jannoura et al. 2015). 

In this study selected RGB-based vegetation indices are tested to 

predict dry matter yield and compared to three indices from the 

visible to near-infrared domain calculated from 

spectroradiometer measurements (Yara N-Sensor).  

*  Corresponding author 
 

2. STUDY AREA 

The study area is located south-east of the city of Cologne in 

Neunkirchen-Seelscheid (Bergisches Land region).  

 

 

Figure 1. Location of Chessboard field trial in Germany (data 

source: ESRI-Basemaps, Eurostat). Inset map: Orthomosaic of 

test site (A. Bolten). 
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The investigated field trial was established in 2017 on a 

conventionally managed permanent grassland field from a local 

farmer. The field has a variability in soil and topography (steady 

slope with northeast to southwest inclination and 25 m difference 

in height). 

The four fertilizer treatments (0, 50, 100, 150 kg N ha-1) are 

applied in a chessboard-like pattern with 39 replicates per 

treatment resulting in 156 plots with an area of 36 m2 each. The 

cutting regime was kept according to the local pattern of three 

cuts per growing season (April-May, May-July, and July-

October).  

 

3. MATERIALS AND METHODS 

3.1 Data acquisition 

For this contribution we will focus on the second cut in 2017 (28th 

of July). Biomass samples of the grass sward in all 156 plots were 

taken from 2.6 m2 of each plot with an electric mower. The fresh 

samples were weighed and a subsample was taken for drying to 

determine dry matter yield in tonnes per hectare (DM t ha-1).  

One day in advance of the biomass sampling UAV-flights and 

spectral measurements were carried out. Spectral measurements 

were executed with the handheld device of the Yara N-Sensor 

(Yara International ASA, Oslo, Norway) (spectral range of 400 - 

1000 nm with 10 nm spectral resolution) at a 60° off-nadir 

position with eight spectra per plot. 

To derive RGB-imagery based vegetation indices (VIRGB) one 

flight campaign with an UAV was carried out around noon. The 

multirotor UAV (MK Oktokopter XL; MicroKopter, Germany) 

was equipped with a Sony Alpha 6000 mounted on a gimbal. 

Images were acquired in about 50 m above ground level 

following the terrain with fixed aperture and whitebalance. 

Lighting conditions were stable during the flight. 18 ground 

control points (GCPs) were evenly distributed in and outside of 

the field and measured with a highly accurate RTK-DGPS 

(Topcon HiperPro 5). Additionally, six reference panels in 

different shades of grey and near lambertian properties were laid 

out for radiometric calibration of the orthomosaic using the 

Empirical Line Method (ELM, Smith & Milton 1999). The 

reference panels were measured with an ASD FieldSpec3 

(Analytical Spectral Devices, Boulder, USA) with a spectral 

range of 350-2000 nm. 

 

3.2 Processing 

The image data was processed using the structure-from-motion 

software Agisoft Photoscan v1.3 to derive an orthomosaic of the 

study area with 7 mm spatial resolution.  

The orthomosaic was calibrated per band to estimated surface 

reflectance using the Empirical Line Method.  The ELM is a 

simple and direct approach to calibrate digital numbers (DN) of 

images to approximated units of surface reflectance. The 

relationship between at-sensor radiance and at-surface 

reflectance is estimated by measuring spectrally stable reference 

targets and comparing these measurements with the respective 

DNs in the image to derive a prediction equation for each image 

band.  The derived prediction equations, which account for 

changes in illumination and atmospheric effects, are applied band 

wise to obtain images in units of estimated surface reflectance 

(Smith & Milton, 1999, Karpouzli & Malthus 2003). 

The following RGB-based vegetation indices (see Table 1) were 

computed in ArcGIS v10.3 on a pixel basis from the calibrated 

orthomosaic: Red-Green-Blue Vegetation Index (RGBVI), 

Greean Leaf Index (GLI), Visible Atmospherically Resistant 

Index (VARI), and Normalized Green Red Difference Index 

(NGRDI). The RGB-based indices were averaged over each plot 

with the tool Zonal Statistics as Table in ArcGIS. 

From the N-Sensor measurements the Normalized Difference 

Vegetation Index (NDVINIR, RED), an optimized NDVI 

(NDVI800,750) and an optimized two band simple ratio index 

(SR810,750) (see Gnyp et al. 2015) were calculated per plot. 

 

VI Name Equation Reference 

RGBVI (RG*RG) – (RR*RB) / 

(RG*RG) + (RR*RB) 

Bendig et al. 2015 

GLI (2*RG – RR – RB) / 

(2*RG + RR + RB) 

Louhaichi et al. 

2001 

VARI (RG – RR) / 

(RG + RR – RB) 

Gitelson et al. 

2002 

NGRDI (RG – RR) / 

(RG + RR) 

Tucker 1979 

NDVINIR, RED (RNIR – RR) / 

(RNIR + RR) 

Rouse et al. 1974 

NDVI800,750 (R800 – R750) / 

(R800 + R750) 

Gnyp et al. 2015 

SR810,750 R810 / R750 Gnyp et al. 2015 

 

Table 1. Applied Vegetation indices. R = reflectance (%),  

RR = red, RG = green, RB = blue, RNIR = near-infrared, Ri = 

reflectance in narrow band region (R800 = 800 nm).  

 

3.3 Statistical Analysis 

The aim of this study is to test the above mentioned VIs as 

predictor for DM yield in grassland. Therefore, linear regression 

models were calculated for each VI using R (R Development 

Core Team 2008). Two incomplete observations were removed. 

The dataset was split randomly into a calibration and validation 

subset (70/30). Regression models were calibrated by applying 

10-fold cross-validation with five repetitions (R caret-Package) 

on the calibration subset. The final regression model for each VI 

was tested on the remaining validation subset by linear 

correlation between observed and predicted DM yield t ha-1. 

Coefficient of determination (R2), standard error (SE), and the 

root mean squared error (RMSE) were calculated as performance 

measures of the regression models.  

 

4. RESULTS 

Figure 2 displays the dry matter yield (t ha-1) averaged over all 

replicates per treatment. Response of biomass accumulation to 

fertilizer input is clearly visible. No outliers are detected.  

 

 

Fig. 2. Dry matter yield (t ha-1) per treatment. Point in box 

represents mean of dry matter yield (t ha-1). 
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4.1 Dry matter yield model calibration 

In Table 2 the regression models of the calibration subsets are 

listed for each VI.  
 

Estimator Model equation R2 SE n 

RGBVI y = -1.1x + 3.534* 0.00 6.02 109 

GLI y = 36.897x – 10.305 0.33 5.04 109 

VARI y = 16.9789x – 1.4906 0.57 1.42 109 

NGRDI y = 22.4527x – 1.8501 0.56 1.93 109 

NDVINIR, RED y = 34.336x – 26.258 0.65 2.45 109 

NDVI800,750 y = 83.6967x – 1.2948 0.65 5.85 109 

SR810,750 y = 37.565x – 38.834 0.64 2.73 109 

 

Table 2. Regression models of the calibration dataset.  

* P > 0.5, all other P < 0.005 

 

The regression model of the RGBVI was not significant and 

therefore left out of the model validation.  

 

4.2 Dry matter yield model validation 

The regression models derived from the calibration subset are 

applied to the validation subset to evaluate model performance.  

 

Estimator Model equation R2 RMSE n 

GLI y = 0.9878x + 0.0798 0.36 0.74 45 

VARI y = 1.0719x - 0.1649 0.63 0.57 45 

NGRDI y = 1.0693x - 0.1528 0.62 0.58 45 

NDVINIR, RED y = 0.975x + 0.0501 0.62 0.58 45 

NDVI800,750 y = 1.1045x - 0.1664 0.65 0.57 45 

SR810,750 y = 1.0861x - 0.1111 0.63 0.58 45 

 

Table 3. Regression models of the validation dataset. 

P < 0.005 

 

Figure 3 a-c displays the validation results of three RGB-based 

VIs calculated from the orthomosaic.  

 

 
 

 
 

 
Figure 3 a-c. Cross-validation results for predicted and 

measured DM t ha-1 from validation subset of VIs derived from 

the orthomosaic.  

N1: 0 kg N ha-1, N2: 50 kg N ha-1,  

N3: 100 kg N ha-1, N4: 150 kg N ha-1. 

 

The GLI performs least of the remaining VIRGB (R2 = 0.36). The 

VARI and NGRDI perform similarly well with an R2 of 0.63 and 

0.62 respectively. All VIRGB show a saturation effect with respect 

to higher biomass levels (higher fertilizer treatments) and tend to 

underestimate the actual dry matter yield.  

 

Figure 4 a-c shows the validation results of the VIs computed 

from the N-Sensor measurements. The optimized narrowband 

NDVI800,750 performs best with an R2 of 0.65. The NDVINIR,RED 

and the SR810,750 perform almost equally well.  
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Figure 4 a-c. Cross-validation results for predicted and 

measured DM t ha-1 from validation subset of VIs derived from 

the Yara N-Sensor measurements.  

N1: 0 kg N ha-1, N2: 50 kg N ha-1,  

N3: 100 kg N ha-1, N4: 150 kg N ha-1. 

 

For the optimized indices there is only a small saturation effect 

visible with higher biomass yield in comparison with the 

broadband NDVINIR, RED and the VIRGB. 

 

5. DISCUSSION AND CONCLUSION 

The primary aim of this study is to evaluate the RGB-image 

based vegetation indices to predict dry matter forage yield and 

compare their performance to indices from the visible to near-

infrared spectrum on an experimental grassland field.  

Using six reference targets for calibrating the orthomosaic to 

estimated surface reflectance by the Empirical Line Method 

minimizes errors in computing the prediction equation per band. 

This is especially important for multitemporal studies of 

vegetation parameters (Smith & Milton 1999, Wang et al 2015).  

Surprisingly, the RGBVI, which performs moderate to well in 

other studies (Bendig et al., 2015; Bareth et al., 2016, Possoch et 

al. 2016) shows no correlation to the observed dry matter yield. 

The GLI performs also weak as an estimator of biomass. Both 

VIs incorporate the blue band in their equation, which might 

influence the result for certain grass species in different growing 

stages and N-supplies. This needs to be further investigated.  

The VARI and NGRDI perform similarly to the Yara N-Sensor 

derived indices, but display stronger saturation effects. Motohka 

et al. (2010) state that application of VIs based on the visible 

spectrum are limited to certain growth stages.  

It is important to note, that the Yara N-Sensor is not optimized 

for biomass or yield prediction but for N-uptake. However, the 

derived VIs are suitable to estimate biomass as shown in Portz et 

al. (2017).  

For biomass prediction Jannoura et al. (2015) showed a 

significant and positive correlation of NGRDI and aboveground 

biomass for oats and peas. Hunt et al. (2005) observed a linear 

correlation of NGRDI with alfalfa, corn, and soy biomass, but 

also observed saturation effects of the predictor variable for 

higher biomass yields.  

The overall performance of the VIs was probably affected by 

slight lodging in plots with higher N applications. Here a 

differentiation of lodging and non-lodging plots would be 

beneficial.  

Due to the field size the VIsRGB were calculated from the 

orthomosaic and not from an overview image covering the whole 

field as discussed by Bendig et al. (2015) and Rasmussen et al. 

(2016). The latter can minimize effects of changing incident light 

but was not feasible due to the slope and size of the experimental 

field. 

Furthermore, the radiometric response of the camera bands of the 

Sony Alpha 6000 is unknown and should be measured with a 

monochromatic light source as recommended by Hunt et al. 

(2005). 

The performance of NGRDI and VARI in comparison with the 

N-Sensor derived indices indicate a promising approach for 

biomass monitoring in grassland with a high spatial and temporal 

resolution.  

Further investigations should be directed to evaluate RGB-based 

VIs for multiple cuts per test site and validate the results with 

independent datasets. Furthermore, the combination of VIs with 

structural parameters such as sward height from crop surface 

models to predict biomass or dry matter yield in grasslands 

should be the next step for investigation (Marshall & Thenkabail, 

2015; Bendig et al. 2015; Geipel et al. 2014). 
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