The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-3
https://doi.org/10.5194/isprs-archives-XLII-3-1229-2018
https://doi.org/10.5194/isprs-archives-XLII-3-1229-2018
30 Apr 2018
 | 30 Apr 2018

THE RESEARCH OF SPECTRAL RECONSTRUCTION FOR LARGE APERTURE STATIC IMAGING SPECTROMETER

H. Lv, Y. Lee, R. Liu, C. Fan, and Y. Huang

Keywords: Interference Imaging Spectroscopy, Apodization, Phase Correction, Fourier Transform, Spectral Reconstruction

Abstract. Imaging spectrometer obtains or indirectly obtains the spectral information of the ground surface feature while obtaining the target image, which makes the imaging spectroscopy has a prominent advantage in fine characterization of terrain features, and is of great significance for the study of geoscience and other related disciplines. Since the interference data obtained by interferometric imaging spectrometer is intermediate data, which must be reconstructed to achieve the high quality spectral data and finally used by users. The difficulty to restrict the application of interferometric imaging spectroscopy is to reconstruct the spectrum accurately. Based on the original image acquired by Large Aperture Static Imaging Spectrometer as the input, this experiment selected the pixel that is identified as crop by artificial recognition, extract and preprocess the interferogram to recovery the corresponding spectrum of this pixel. The result shows that the restructured spectrum formed a small crest near the wavelength of 0.55 μm with obvious troughs on both sides. The relative reflection intensity of the restructured spectrum rises abruptly at the wavelength around 0.7 μm, forming a steep slope. All these characteristics are similar with the spectral reflection curve of healthy green plants. It can be concluded that the experimental result is consistent with the visual interpretation results, thus validating the effectiveness of the scheme for interferometric imaging spectrum reconstruction proposed in this paper.