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ABSTRACT: 

 

Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various 

remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in 

other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual 

hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. 

However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated 

various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral 

features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure.  

Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high 

accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10% better results 

than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 

40% compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0%) was 

obtained with multiview anisotropy corrected data set and the 3D features.  

 

 

1. INTRODUCTION 

The use of light-weight 2D format hyperspectral (HS) imagers 

operable from unmanned aerial vehicles (UAV or drone) has 

become common in various remote sensing tasks. Examples of 

these cameras include the Rikola camera of Senop Ltd. based on 

tuneable Fabry-Pérot interferometer (FPI) (Mäkynen et al., 

2011; Honkavaara et al., 2013; Oliveira et al., 2016; Jakob et 

al., 2017) and the Cubert UHD Firefly snapshot hyperspectral 

camera (Aasen et al., 2015; Yang et al., 2017). Their advantages 

in comparison to the commonly used pushbroom scanners are 

that they capture stereoscopic data and do not require 

complicated orientation processing supported by the 

GNSS/IMU direct orientation techniques (Mäkynen et al., 2011; 

Honkavaara et al., 2013).  

 

In the 2D format imaging setup, the area of interest is covered 

by an image block that has multiple overlapping images. 

Typically, each object point appears in 10-30 individual 

hypercubes. The common practice is to calculate hyperspectral 

orthomosaics thus only single spectra for each pixel is used. 

However, the image redundancy gives various additional 

opportunities for feature extraction. Images can be mosaicked, 

to capture single reflectance value for each ground pixel, or 

multiple reflectance spec1tra can be taken from the overlapping 

images, and additional features (e.g. anisotropy, standard 

deviation, etc.) can be calculated from the multiview 

observations. In addition, dense point clouds can be created 
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from the dataset in order to extract features describing the 

canopy 3D structure, such as height average or standard 

deviation.  

 

It is expected that these different information could be utilized 

to improve classification and estimation processes. For 

example, previous studies by Roosjen et al. (2016) showed that 

the anisotropy of barley, winter wheat and potato in two 

measurement dates was different, and could potentially be used 

as a signal in operational remote sensing. Recently, Roosjen et 

al. (2018) used the PROSAIL radiative transfer tool to estimate 

the leaf area index and the leaf chlorophyll content using the 

nadir and multi-angular data collected by the UAV. Simulated 

and empirical results showed that the estimates improved when 

adding multi-angular observations to the estimation process. 

The drone-based photogrammetric point clouds have also 

shown potential in agricultural crop biomass estimation (eg. 

Bendig et al., 2013; Li et al., 2016; Näsi et al., 2017). 

 

The objective of this investigation was to evaluate various 

options of extracting features from RGB and HS 2D frame 

format image datasets. An experimental assessment was carried 

out in the case of fresh biomass estimation of grass sward using 

a Random Forest estimator. 
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2. MATERIALS AND METHODS 

2.1 Test area 

Experiments were conducted in a silage production field at the 

Natural Resources Institute Finland (LUKE) research farm, 

located in the municipality of Jokioinen in South-West Finland 

(approximately 60°48′N, 23°30′E). The size of the experimental 

area was approximately 50 m by 20 m (Figure 1). The 

experimental set up was a split plot design with four replicates. 

The fertilizer treatment was divided into 24 main plots (plot size 

12 m x 3 m), and the harvesting time was in 96 sub-plots of size 

of 1.5 m by 3 m. The idea of the experimental set up was to 

generate great variation in the study sward. The experiment had 

six different nitrogen fertilizer application rates (0, 50, 75, 100, 

125 and 150 kg N/ha) and used four harvesting dates from 

6.6.2017 to 28.6.2017. In this study only the dataset captured in 

6.6.2017 was used, therefore, we had altogether 24 reference 

plots of size of 1.5 m by 3 m, having six different nitrogen 

fertilizer levels with four replicates. Reference measurements 

included grass height, fresh and dry matter yield, and feeding 

quality characteristics. The measured fresh biomass values 

varied from 1022 to 5975 kg/ha, where the lowest amount was 

detected from a sub-plot without nitrogen fertilizer and the 

highest from a sub-plot with the maximum nitrogen fertilization 

level.  

 

 
Figure 1. RGB orthomosaic from the test area in 6 June, 2018 

and locations of 24 sample plots and flight trajectory. 

 

2.2 Data capture campaign 

The Finnish Geospatial Research Institute’s (FGI’s) drone was 

utilized for collecting the remote sensing datasets on 6 June 

2017 at 15:30 local time (Figure 2). The sun zenith was 51.3° 

was and azimuth was 217.9°. Weather conditions were mostly 

sunny and windless. The frame of FGI’s drone was Gryphon 

Dynamics quadcopter with detachable arms and it was equipped 

with Pixhawk autopilot with ArduPilot APM Copter 3.4 

firmware. The drone was equipped with a positioning system 

consisting of an NV08C-CSM L1 GNSS receiver, a Vectornav 

VN-200 IMU and a Rasberry Pi single-board computer. The 

sensor payload included an RGB digital camera, Sony A7R, and 

a hyperspectral camera based on a tuneable Fabry Pérot 

interferometer (FPI), operating in the visible to near-infrared 

spectral range (500-900 nm) (Mäkynen et al., 2011; Honkavaara 

et al., 2013). The FPI camera is lightweight, frame format 

hyperspectral imager operating in time-sequential principle, 

collecting spectral bands with 648 by 1024 pixels. In this study, 

we used the mode with 36 bands (Table 1).  

 

Five permanent ground control points (GCPs) were installed in 

corners and center of the block. They were black painted 

plywood boards of size 0.5 m by 0.5 m, with a white painted 

circle with diameter of 0.3 m. GCPs were measured with 

Trimble R10 RTK DGNSS within 0.03 m horizontal and 0.04 m 

vertical accuracy. For reflectance transformation purposes, three 

reflectance panels of size of 1 m by 1 m with nominal 

reflectivity of 0.03, 0.1 and 0.5 were set up next to the area with 

the grassplots.  

 

The flying altitude was 50 m giving the GSDs of 5 cm for the 

hyperspectral data and less than 1 cm for the RGB data. The 

flying speed was 1 m/s and distance between collected 4 flight 

lines was 8 m resulting 85% forward and side overlaps for FPI 

images. Theoretically, this provides 32 multiview observations 

for each object point. 

 

  
Figure 2. Data capture using the FGI quadrocopter drone. 

 
Band 1 2 3 4 5 6 7 8 9 10

L0 [nm] 512.3 514.8 520.4 527.5 542.9 550.6 559.7 569.9 579.3 587.9
FWHM [nm] 14.81 17.89 20.44 21.53 19.50 20.66 19.56 22.17 17.41 17.56

Band 11 12 13 14 15 16 17 18 19 20
L0 [nm] 595.9 604.6 613.3 625.1 637.5 649.6 663.8 676.9 683.5 698.0

FWHM [nm] 21.35 20.24 25.30 27.63 24.59 27.86 26.75 27.00 28.92 24.26

Band 21 22 23 24 25 26 27 28 29 30
L0 [nm] 705.5 711.4 717.5 723.8 738.1 744.9 758.0 771.5 800.5 813.4

FWHM [nm] 24.44 25.12 27.45 27.81 26.95 25.56 27.78 27.61 23.82 28.28

Band 31 32 33 34 35 36
L0 [nm] 827.0 840.7 852.9 865.3 879.6 886.5

FWHM [nm] 26.61 26.85 27.54 28.29 25.89 23.69  
 

Table 1. Spectral settings of the hyperspectral camera. L0: 

center wavelength; FWHM: full width at half maximum. 

 

2.3 Data processing chain 

The approach in the data processing was to generate ultra-dense 

point clouds using the RGB datasets and to calculate image 

mosaics and other spectral features using the HS data sets.  

 

The datasets were processed using the processing line 

developed at the FGI (Honkavaara et al., 2013, 2017, 2018; 

Näsi et al., 2018; Nevalainen et al., 2017). The steps are the 

following: 

1. Applying laboratory calibration corrections to the images. 

2. Determination of the geometric imaging model, including 

interior and exterior orientations of the images. 

3. Using dense image matching to create an ultra-high density 

photogrammetric digital surface model (DSM). 

4. Determination of a radiometric imaging model to transform 

the digital number (DNs) data to reflectance. 

5. Calculating the radiometric output products 

6. Extracting spectral and other image and 3D structural 

features. 

7. Estimation of grass parameters. 
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The processing was divided to the geometric (steps: 2, 3) and 

radiometric (steps 1, 4, 5) processing steps. The further 

procedures for feature extraction and estimation are presented in 

Section 2.4. 

 

Agisoft Photoscan Professional (version 1.3.5) was used for the 

photogrammetric processing, which involved image orientation 

estimation and DSM generation. The RGB images were 

processed separately, and the three reference bands of the FPI 

images were processed in a combined processing with the RGB 

images. The band registration for the rest of the bands of the 

FPI images was carried out using the approach developed by 

Honkavaara et al. (2017). The object point cloud can be 

produced from the FPI images, but in this study we used the 

RGB camera to calculate an ultra-high resolution DSM with 1 

cm GSD. 

  

The in-house rigorous radiometric processing software, radBA, 

was used for the radiometric processing of the FPI images 

(Honkavaara et al., 2013; Honkavaara and Khoramshahi, 2018). 

The processing used different processing levels to create the 

mosaics:  

1. Uncorrected nadir mosaic. Mosaics were created 

using the most nadir parts of the images. Reflectance 

calibration was carried out using the empirical line 

(EL) method with panels (Smith and Milton, 1999). 

2. Corrected nadir-mosaic. Mosaics were created using 

the most nadir parts of the images applying the 

irradiance and anisotropy corrections, as well as 

reflectance calibration using the panels.  

3. Multiview hemispherical directional reflectance factor 

(HDRF) point cloud. Reflectance was taken from each 

image where the sample point appeared. Reflectance 

calibration was carried out using the EL-method. 

4. Anisotropy corrected multiview reflectance point 

cloud. Reflectance was taken from each image where 

the sample point appeared. The irradiance and 

anisotropy corrections were applied and the 

reflectance calibration was performed using panels.  

5. Sample-wise bidirectional reflectance distribution 

function (BRDF) model parameters. The Walthall’s 

(Walthall et al., 1985; Honkavaara and Khoramshahi, 

2018) BRDF model was estimated for each sample 

point and the parameters were used as the features. In 

this model, the parameter b1 represents the impact of 

the zenith view angle, b2 accounts for the azimuth 

angle difference of the sun and viewing directions and 

the b3 represents the reflectance at nadir view 

direction. 

 

 

2.4 Feature extraction and estimation 

 Reflectance values from 36 bands were extracted and used as 

spectral features. Based on processing levels (section 2.3) the 

average reflectance value of the window, with a size of 50 cm x 

50 cm, were extracted from the most nadir mosaics (processing 

levels: 1-2) or using each image where point appeared 

(processing levels: 3-4). Furthermore, 3D features based on 

canopy height model (CHM), which was created using the RGB 

camera-based 3D photogrammetric point cloud, were extracted 

for the plots; the features included the average, median, 

minimum, maximum, standard deviation and percentiles (70, 

80, 90) of the canopy heights.  The estimation in multiview 

approaches were performed with (processing level 3b, 4b) and 

without (processing levels 3a, 4a) 3D features. In processing 

level 5, sample-wise BRDF-model parameters from each band 

were used as features. 

 

Estimation and validation were done using the Random Forest 

(RF) estimation (Breiman, 2001) implemented in the software 

Weka (Weka 3.8.1, University of Waikato). The RF method was 

used to estimate grass sward yield quantity (fresh above-ground 

biomass) parameter. To assess the prediction accuracy during 

the estimation of biomass for grass we used 2/3 of the samples 

to train and 1/3 of the samples to test the model. The estimation 

accuracy was quantified using Correlation Coefficients and 

Root Mean Square Error (RMSE).  

 

 

3. RESULTS 

3.1 Radiometric processing results 

The illumination conditions during the data collection were 

clear and sunny during three first flight lines and partially 

cloudy during the last flight line. We used only the three first 

lines in the estimations to obtain homogeneous data quality.   

Orthophoto mosaics of processing levels 1 and 2 (Uncorrected 

and corrected nadir mosaics) are shown in Figure 3. The 

homogeneity (coefficient of variation) was on the level of 10% 

in the overlapping images (Figure 4), and the radiometric 

processing improved the homogeneity only slightly. The 

ortophoto mosaic was visually uniform even without anisotropy 

correction because the view zenith angles in the most nadir 

mosaics were less than 3° due to the high overlaps thus the 

resulting anisotropy effects were minor.  

 

 

 
Figure 3. (a) Uncorrected and (b) corrected orthophoto mosaics, 

bands 790.85, 668.97 and 537.48nm. 

 

(a) 

(b) 
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Figure 4. Uniformity of the image mosaic. sd_refl_orig: 

coefficient of variation of the origninal mosaic; sd_refl_fin: 

coefficient of variation of the corrected mosaic. 

 

 

3.2 BRDF estimation 

First we estimated three BRDF parameters for each nitrogen 

fertilization level using all sample points (Figure 5). In these 

plots, the wavelength dependency is clearly visible and also the 

nitrogen fertilization levels impacted the parameters. 
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Figure 5. BRDF parameters calculated using all sample points 

of specific nitrogen fertilization level: (a) b1, (b) b2 and (c) b3. 

n000 to n150 represent the nitrogen fertilization levels. 

 

In order to investigate how different fertilization levels 

impacted the modelled reflectance and anisotropy, we 

calculated the BRDF and anisotropy factors (Honkavaara and 

Khromashahi, 2018) for different nitrogen fertilization levels 

for red (L0=649.60 nm) and NIR (L0=800.50 nm) bands at the 

solar principal plane (Figure 6). In these plots, we see clearly 

the different behaviour of different spectral ranges; in the red 

band, the low reflectance in the forward scattering direction is 

due to the chlorophyll absorption and due to the fact that the 

shadowed parts of the canopy is seen (Figure 6a). In the case of 

the NIR band, the BRDF had a bowl shape which is the 

expected behaviour (Figure 6b). The results regarding the 

behaviour of different spectral ranges are consistent with 

previous results by Roosjen et al. (2016). 
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Figure 6. BRDF at solar principal plane for (a) red band and (b) 

NIR band. n000 to n150 represent the nitrogen fertilization 

levels. 
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Figure 7. Anisotropy at solar principal plane for (a) red band 

and (b) NIR band. n000 to n150 represent the nitrogen 

fertilization levels. 

 

 

3.3 Estimation results 

The RF algorithm was used to estimate fresh biomass yield. The 

results were good for all selected feature sets (Table 2). In 

processing the levels 1 and 2, spectral features were extracted 

from most-nadir images. The difference between these sets were 

that only in the processing level 2, the irradiance and anisotropy 

corrections were applied to the mosaic. The estimation 

performance was similar, which was expected because the 

mosaics were uniform in both cases (Figure 3). The estimation 

results using multiview data on processing levels 3a and 4a 

provided approximately 10% better results than the most nadir 

approaches (1-2). Adding the 3D features improved the 

estimation accuracies approximately 40% (3b, 4b) based on 

RMSE values. The sample-wise BRDF parameters were 

extracted for 15 samples which had BRDF parameters for every 

band. In this case correlation coefficient was 0.967 and b3 

parameters (Figure 5) were most important features based on 

RF algorithm. The estimation accuracies were at the same level 

as in the other cases that did not have the 3D features.  

 

The best estimation RMSE was 239 kg/ha (6.0%) with the 

multiview anisotropy corrected mosaic and the 3D features. 

This can be considered as very good accuracy level. 

 

 

 

 

 

 

 

 

Processing level Corr. 

coeff. 

RMSE 

(kg/ha) 

RMSE 

(%) 

1  Uncorrected nadir 

mosaic 

0.985 435.1 11.1 

2  Corrected nadir mosaic 0.985 534.0 13.6 

3a Multiview HDRF 

mosaic 

0.959 444.5 11.3 

3b Multiview HDRF 

point cloud 

0.987 261.4 6.6 

4a Multiview anistropy 

corrected mosaic 

0.968 390.8 9.9 

4b Multiview anistropy 

corrected point cloud 

0.989 236.9 6.0 

5 Sample-wise BRDF 

parameters 

0.967 445.7 13.0 

 

Table 2. The fresh biomass estimation results (Corr. coeff.= 

Pearson correlation coefficient, RMSE= root-mean-square error 

in kg/ha and %) for different processing levels: 1 Uncorrected 

nadir mosaic, 2 Corrected nadir mosaic, 3a Multiview HDRF 

mosaic, 3b Multiview HDRF point cloud, 4a Multiview 

anisotropy corrected mosaic, 4b Multiview anisotropy corrected 

point cloud and 5 Sample-wise BRDF parameters. 

 

4. CONCLUSIONS 

This study evaluated different options to extract features of a 

dataset based on 2D frame format hyperspectral image block 

and a photogrammetric ultra-high resolution canopy height 

model. The estimation task was the fresh biomass yield 

estimation of the grass sward. 

 

The Random Forest algorithm was used to estimate fresh 

biomass amount successfully for all feature sets. The 

preliminary estimation results using multiview data showed 

improvements of about 10% in comparison to the case using the 

most nadir orthophoto mosaic. The use of photogrammetric 3D 

features improved estimation accuracy up to 40% in comparison 

to the approaches where only spectral features were applied. 

The utilization of the bidirectional reflectance distribution 

function (BRDF) parameters in the estimation process did not 

improve the results in our preliminary results. However, the 

BRDF effects (anisotropy factors) at the maximum view angles 

were up to 60% and different nitrogen fertilization levels 

provided different BRDF-parameters, which suggested that 

further considerations of the utilization of these parameters are 

necessary. Further interesting test cases will be the estimation of 

other parameters, such as grass quality, e.g. the digestibility.  
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