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ABSTRACT: 

 

Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error 

sources in the Clouds and the Earth’s Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in 

China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error 

dominate the Rn error, with error contributions of ~-20, ~15, ~10 and ~10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), 

respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with 

abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, 

especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The 

total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, 

CF and LST (AT) error in northern (southern) China should be decreased.  
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1. INTRODUCTION 

Surface net radiation (Rn) is an important variable for 

estimating surface energy budgets which drives evaporation, 

photosynthesis, and surface/atmospheric temperature variations 

(Denmead,1962; Federer,1968; Idso,1975). Rn is composed by 

net shortwave radiation (NSW) (the difference between 

downward (S↓) and upward (S↑) shortwave radiation) and net 

longwave radiation (NLW) (the difference between downward 

(L↓) and upward (L↑) longwave radiation) (Monteith,2008; 

Jegede,1997; Shi,2013). Remote sensing provides an effective 

method for obtaining global net radiation data from the CERES 

(Clouds and the Earth’s Radiant Energy System) projects and 

other projects (Liang,2010; Stackhouse,2011). The retrieval 

datasets are widely used for investigating regional and global 

scales because of their temporal continuity and spatial 

homogeneity (Liang,2005; Gui,2010) .  

Rn product validation has been extensively performed at global 

scale with high accuracy (with an error below 10 W/m2) 

(Lin,2008; Kato,2012; Kato,2013). Kato et al. (Kato,2013) 

compared CRERS monthly S ↓  (L ↓ ) data with ground 

observations at 24 sites, and reported that it had a bias of - 1.70 

(- 1.00 W/m W/m2) with an root mean square error (RMSE) of 

7.80 (7.60 W/m2) over the global land area. At regional scale, 

the radiation components also may have a satisfactory accuracy 

(Zhang,2015). Zhang et al. (Zhang,2015) validated CERES 

monthly S↓data with the aid of GEBA (CMA) ground sites in 

China. Results show a bias of 5.0 (8.1 W/m2) and RMSE of 

18.8 (20.5 W/m2) in China. However, higher Rn errors (more 

than 20 W/m2) may be also high in the certain region 

(Kato,2013; Gui,2009; Gui,2010; Pan,2015). Pan et al. 

(Pan,2015) showed that Rn is generally overestimated for 

CERES in China, with biases of 26.52 W/m2. Previous studies 

have evaluated the error sources of CERES Rn by using 

uncertainty analyses or statistically analyses. Kato et al. found 

the L↓ uncertainty (the largest contribution to Rn uncertainty) 

was dominated by the near surface temperature and precipitable 

water (both causing uncertainties of approximately 5 W/m2). 

The cloud property of CERES was also the important source of 

uncertainty (Kato,20132; Kato,2013; Kato,2011). In Pan et al.’s 

research, errors had been attributed to environmental parameters, 

including surface albedo, surface water vapor pressure, land 

surface temperature (LST), the normalized difference vegetation 

index (NDVI) and visibility in a way of statistically analyses 

(Pan,2015). Though Rn algorithm uncertainty generated by 

input parameters and the probably affecting factors were 

identified, the actual error sources remain unclear due to the 

lack of real input parameter errors.  

To address this problem, we analyze linear partial derivatives 

based on Rn product algorithms and real input errors. Result of 

this study is helpful to provide recommendations for improving 

the quality of Rn products. This paper is organized as follows: 

Section 2 introduces the methods used for sensitivity and error 

analyses; Section 3 presents the required data and the data 

processing methods; Section 4 presents the sources of algorithm 

sensitivity and the rules of input error propagation, then 

discusses the main factors that contribute to the Rn errors; 

Section 5 gives recommendation on which input should be 

improved for the CERES retrieval of surface net radiation, then 

discusses the applicability and shortcomings of the analysis 

method; and Section 6 presents the conclusions. 
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2. METHODS AND DATA 

2.1 CERES radiation algorithms 

2.1.1 CERES shortwave algorithm: The CERES shortwave 

data is retrieved through the Li et al.’s algorithm (Li,1993). It is 

a simple parameterization that can be used to estimate surface-

absorbed flux from satellite-measured reflected flux at the top of 

the atmosphere (TOA). Li et al.’s extensive radiative transfer 

modeling suggests a linear relationship between the flux 

reflected by TOA and absorbed at the surface for a fixed solar 

zenith angle (SZA) for clear skies and under 4 different cloud 

atmospheric conditions (Eq. 1). The linear relationship is 

independent of the cloud-optical thickness and surface albedo, 

strongly depends on the SZA and moderately depends on the 

precipitable water and cloud type.    
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(1) Where θ is the SZA; E0 is the TOA insolation; Fu is the 

TOA upward flux; D is the Earth–Sun distance in astronomical 

units; and W is the total water vapor amount (TPW). a1 - a7 are 

the constant coefficients relative to the cloud situation, but 

CERES products select the situation under clear sky instead of 

all situations with the coefficient values of -0.01124, 0.1487, -

0.0699, 0.0683, 0.0542, 0.0139, and 0.0216, respectively. The 

coefficients x, y and z are held constant at 0.5. 

 

2.1.2 CERES longwave algorithm: The CERES longwave 

product adopts the Gupta et al.’s algorithm (Gupta,1989; 

Gupta,1992). The algorithm is a parameterization of the 

radiation transfer equation for surface longwave radiation. 

Model constants rely on the atmospheric humidity profile from 

satellite retrieval products. In Gupta et al. algorithm, all-sky L↓ 

radiation is composed of clear sky L↓ radiation with a cloud 

effect correction (Eq. 2).   
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(2) where σ is the Stefan-Boltzmann constant; Ts is LST; Ac 

represents the fractional cloud cover (CF); A0 - A3 are the 

regression coefficients with values of 1.791E-07, 2.093E-08, -

2.748E-09 and 1.184E-09, respectively; Te is the effective 

emitting temperature of the atmosphere (AT); Tcb represents 

the cloud base temperature (CBT); Wc represents the water 

vapor burden below the cloud base (CBV); B0, B1, B2 and B3 

are regression coefficients with values of 4.990E+07, 

2.688E+06, -6.147E+03 and 8.163E+02, respectively; and εs is 

the land surface emissivity (LSE). 

 

2.2 Error analysis method 

Radiation product errors mainly result from algorithm and input 

data errors. In this study, we directly simulated product errors 

generated by the errors of input parameters. Meanwhile, we also 

indirectly obtained the algorithm errors by comparing of the 

difference between simulation and real radiation error (Figure 

1). To clarify and quantify the error source, it is necessary to 

calculate the partial derivative (PDE) for each input parameter 

of the CERES shortwave and longwave radiation algorithms, 

and the range values of real input parameters are plugged into 

the PDEs, and then the algorithm sensitivity of each parameter 

is simulated at each site (Figure 1). The parametric error 

analyses were obtained by the product of the PDEs and input 

parameter errors. The computations of the bias between satellite 

and ground-observed input variable, e.g. TPW, multiplied PDEs 

to get the error contributions of each parameter for CERES Rn 

error. Thus, all error contributions of each environmental 

parameter can be obtained. In addition, the residuals (the real 

Rn errors minus the sum of error contributions) are the 

combination of NSW and NLW error residuals (real error minus 

simulated error). For NSW, the discrepancy between simulation 

and observation is mainly determined by the Li et al.’s 

algorithm error. For NLW, the discrepancy is relative to the 

Gupta et al.’s algorithm error. Besides, the errors of satellite 

retrieval atmosphere profile and cloud property (determining the 

water vapor content and temperature below the cloud) are other 

affecting factors to NLW error residuals. Their error 

contributions cannot be simulated because of the lack of the 

atmospheric profile and cloud property reference. Finally, the 

error contributions of input parameters and algorithm errors 

were calculated, and then the main sources of data errors were 

determined. Using these data, error analyses were discussed for 

11 sites based on the radiation components (NSW and NLW) 

and for 43 sites based on Rn. The analyses of error sources were 

conducted at representative sites at the intra-annual scale to 

clarify the temporal variations of error sources in the different 

regions. 
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Figure 1. Schematic of the procedure for evaluating the surface 

radiation error 

 

Figure 2. Distribution of surface radiation sites in China 
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2.3 Data 

2.3.1 Ground-measured data: Overall, 43 meteorological 

(Figure 2) sites are available for error analyses, including 11 

level-1 surface radiation observation sites and 32 level-2 sites in 

China from March in 2000 to December in 2007. The sites are 

distributed between 18°N and 54°N, and 76°E and 128°E, with 

altitude ranges from 2.5 m to 2807.6 m. The sites represent a 

wide range of landscape, climatic and hydrogeological 

conditions. These sites measure the surface net radiation, 

radiation components (only level-1 sites), 0 cm surface 

temperature, surface vapor pressure and cloudiness. The data 

were acquired from the National Meteorological 

Information/Centre of the Chinese Meteorological 

Administration (NMIC/CMA, http://cdc.cma.gov.cn). All of the 

acquired data were quality controlled, and the measurement 

error of the pyrradiometer was less than 5%, and 3% for global 

radiation (Xia,2006;Shi,2008;Tang,2010;Xu,2011).The product 

parameters were validated for both the satellite retrieval and 

ground validation data. Ground validation data were derived 

using surface-based variables. The input parameters of the site 

observations or parameters that could be determined from the 

site observations, including TPW, AT, CF and LST, were 

evaluated when searching for examining Rn error sources. 

Furthermore, TPW and AT must be conducted indirectly with 

other ground observation data. The TPW, W, can be estimated 

from surface vapor pressure, ew, in China as 
' ' ' 2

0 1 2w wW a a e a e   , 

where a0’ - a2’ are fitting coefficients depending on the sites 

(Yang,2002). The AT, Te, is obtained from the surface 

temperature, Ts, as 55.8 0.77e sT T  ( Bevis,1992). 

 

2.3.2 Satellite-retrieved data: The CERES datasets are 

produced, archived, and made available to the scientific 

community by the Langley Research Center (LaRC), 

Atmospheric Sciences Data Center (ASDC), the National 

Aeronautics and Space Administration (NASA) (Wielicki,1996; 

Smith,2011). The CERES product has a spatial resolution of 

1°×1° and a temporal resolution of 3 hours, with a mean bias of 

29.7 W/m2 and a standard deviation of 123.2 W/m2 (Gui,2010). 

CERES algorithms use cloud and atmospheric profile 

information from the Moderate Resolution Imaging 

Spectroradiometer (MODIS)/ 4-D data assimilation Goddard 

EOS Data Assimilation System level-4 (GEOS-4) and GEOS-4, 

respectively. Meanwhile solar insolation and TOA broadband 

fluxes measured from the Solar Radiation & Climate 

Experiment Total Irradiance Monitor and CERES are used for 

constraints (Atmospheric,2005; CERES,2014). To match the 

range of ground measured data, monthly Rn data were obtained 

from the CERES EBAF-Surface Product (Edition 2.7) from 

July in 2000 to December in 2007. 

The original input data of the radiative flux products are not 

available for CERES. In this study, we collected the model 

inputs from the following sources (Table 1). The TOA S↑ and 

insolation were obtained from CERES SYN1deg. The cloud 

properties and SZA were taken from GEOS-4 and SRB SW 

V3.0, respectively. These datasets are available for NASA, 

LaRC (Smith,2011; Gupta,1999; Gupta,2006). The Earth–Sun 

distance in astronomical units was obtained from Solar System 

Live (http://www.fourmilab.ch/cgi-bin/uncgi/Solar/action?sys=-

Si). 

Several input parameters were calculated by using empirical 

formulas due to a lack of relevant input data from the remote 

sensing products. LSE,  , is estimated by NDVI obtained from 

optical hyper-temporal Satellite Pour l’Observation de la Terre 

(SPOT) VEGETATION (SPOT VGT) data (Van,1993). The 

dataset is provided by the Cold and Arid Regions Science Data 

Center at Lanzhou (http://westdc.westgis.ac.cn). In addition, the 

cloud-base heights are lower than 700 mb at most of the sites in 

China. Therefore, an atmospheric temperature of less than 700 

mb is used as CBT in the rules of CERES (Wielicki,1997). The 

cloud parameters from the International Satellite Cloud 

Climatology Project (ISCCP) DX data products (another 

accurate cloud product) (Rossow,1993;Rossow,1999; 

Zhang,2001) were also analyzed to inter-compared with the 

GEOS-4 cloud data for improving the quality of cloud data. 

 

Radiation 

Component 
Parameter 

Base 

Variable 

Data 

Source 

Validation 

reference 

NSW 

TPW TPW GEOS-4 
vapor 

pressure 

SZA SZA SRB SW  - 

Insolation Insolation 
CERES 

SYN1deg 

- 

TOA 

upward 

flux 

TOA 

upward flux 

CERES 

SYN1deg 

- 

NLW 

TPW TPW GEOS-4 
vapor 

pressure 

CF CF GEOS-4 CF 

CBV 
Humidity 

profile 
GEOS-4 

- 

LST LST 
CERES 

SYN1deg 

surface 

temperatur

e 

LSE NDVI 
SPOT 

VGT 

- 

AT 
Temperature 

profile 
GEOS-4 

surface 

temperatur

e 

CBT 
Temperature 

profile 
GEOS-4 

- 

Table 1. Remote sensing data for estimating radiation errors and 

the surface observations for validating the parameters 

 

3. RESULTS AND DISCUSSIONS 

3.1 Net radiation algorithm sensitivity 

Figure 3 summarized the algorithm sensitivities for each 

parameter with a unit parameter variation (1K for temperature, 

0.01 for emissivity and CF, and 1g/cm2 for water vapor amount). 

In the sensitivity analyses, TPW, CF, CBW, LST, LSE, AT and 

CBT were derived from the ranges of 0.12 ~ 6.32 g/cm2, 0.17 ~ 

0.99, 0.13 ~ 4.17 g/cm2, 236.23 ~ 312.68 K, 0.92 ~ 0.99, 

237.70 ~ 296.57 K and 249.20 ~ 300.66 K, respectively. In 

these ranges of parameters, the TPW-induced CERES NSW 

sensitivity might reach -15 to -6 W/m2. For the NLW, the 

following influencing factors of algorithm sensitivities were 

obtained (in order of algorithm sensitivity to each parameter): (1) 

TPW (2 ~ 30 W/m²), (2) CF (6 ~ 16 W/m²), (3) CBW (0.5 ~ 6.5 

W/m²), (4) LST (- 6 ~ - 3 W/m²), (5) LSE (- 4.5 ~ -2 W/m²), (6) 

AT (1 ~ 3.5 W/m²) and (7) CBT (0.1 ~ 1.8 W/m²). Evidently, 

both shortwave and longwave algorithms are highly sensitive to 

TPW. CF and LST were also the large sensitive parameters to 

longwave algorithm. In addition, considering that the satellite-
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measured TOA S ↑  is an important parameter of NSW 

algorithm, the calibration of satellite may affect the algorithm 

uncertainty. Thus, algorithm sensitivity due to TOA S↑ should 

be used to evaluate input uncertainty. This variable resulted in a 

CERES NSW fluctuation of 2.73 W/m² due to an uncertainty of 

less than 1.5% in the CERES calibration (Morstad,2011). 

Generally, the uncertainty of the CERES calibration has a weak 

influence on the quality of net radiation data. 

 

 
Figure 3. Algorithm sensitivity due to unit variation of input 

parameters, including the situation of (a) NSW and (b) NLW 

 

3.2 Error contributions of individual parameters to 

radiation components 

The Rn error results from the NSW and NLW error. Figure 4 

showed Rn error contributions of each parameter, and the NSW 

and NLW simulated errors accompanying with the real NSW 

and NLW errors at 11 level-1 sites. The TPW was an 

unimportant source of NSW error even it might strongly affect 

the NSW error according to the sensitivity analyses, with an 

error contribution of 4.13 W/m2 in Figure 4(a). The discrepancy 

ranged from 0.92 W/m2 (Urumchi) to 19.76 W/m2 (Sanya) 

between NSW simulated and real error. That is, the algorithm 

error was within the range. Thus, there were large shortwave 

algorithm errors (more than 10 W/m2) at all sites except for 

Urumchi and Zhengzhou sites.  

For NLW, we only evaluated the error sources due to AT (12.94 

W/m2 NLW error), CF (-20.85 W/m2 NLW error), LST (16.38 

W/m2 NLW error) and TPW (-5.74 W/m2 NLW error) because 

the limited types of sites were observed, as shown in Figure 

4(b). The LST and CF were the largest error sources, 

particularly in northern China. In addition, the AT affected the 

NLW greatly in southern China. The residuals (real error minus 

the simulated error) ranged from -15.90 W/m2 (Sanya) to 33.49 

W/m2 (Ejin Banner). The simulations agreed well with the real 

NLW errors in southern China, as shown in Figure 4(b). The 

differences of residuals among sites potentially revealed that the 

combination of Gupta et al.’s algorithm error and the errors of 

atmosphere profile (cloud property) was less in southern China. 

The proportionality of the NSW error simulation accounting for 

Rn was 57.74%, and it was similar to the real proportionality 

(56%) (Pan,2015). CF, LST, AT and residuals were the primary 

error sources, with Rn error contributions of ~-20, ~15, ~10 and 

~ 10W/m2 (NSW/NLW), respectively. Furthermore, TPW had 

weak influence on Rn error. 

 

 

 

Figure 4. Simulations of the radiation component error sources 

at the 11 level-1 sites, including the (a) NSW situation, (b) 

NLW situation, with the simulated and real error of radiations 

 

3.3 Error contributions of individual parameters to net 

radiation 

In order to increase the reliability of analyses about Rn error 

contributions, 43 sites with the entire series of input data were 

selected, and the Rn error contributions of each input parameter 

were calculated in Figure 6. The residuals consisted of the NSW 

and NLW error residuals (real error minus simulative error) 

were also shown in Figure 6. The monthly mean CERES Rn 

were 79.62 W/m², with errors of 27.24 W/m² compared to 50 

surface site measurements in China (Pan,2015). The average 

simulated Rn errors were 7.43 W/m² at 43 sites in China. 

Figure 5 showed that the CERES Rn error contributions of LST 

were large in the northern regions, which was mainly attribute 

to the considerable LST error and high LST sensitivity. The 

LST contributions to Rn error ranged from - 20.22 W/m2 to 

53.91 W/m2, with an average value of 18.88 W/m2. The low 

error contribution of LST (less than 15 W/m2) only appeared at 

some sites in southern China. Other than these sites, the AT and 

CF were the main error sources in China and had resulted in Rn 

errors of 13.09 W/m2 and - 18.51 W/m2, respectively. The AT 

mainly affected Rn error in southern China and caused 16.92 

W/m2 of Rn error. The CF contributions ranged from - 29.01 
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W/m2 to - 1.82 W/m2, and large error contributions 

(approximately - 20 W/m2) were observed at most of sites. The 

TPW contributed - 12.91 W/m2 to Rn error in northwestern 

China. The sites with large residuals (approaching to 20 W/m2) 

were concentrated in northern China. 

 

 

Figure 6. Main sources of net radiation error for CERES 

 

3.4 Implications for improving product accuracy 

Regarding the direct sources of Rn error, it is necessary for 

improving the NSW quality firstly. The input error must be 

taken into consideration for sensitive parameters. Overall, CF, 

LST and AT were the main influencing factors of Rn error. 

Figure 6 and Figure 7 show the disagreements between satellite 

observations and site observations. The averages are 285.11 K 

and 289.38 K for the satellite-derived and observed LST 

throughout China. The difference between the datasets ranges 

from -14.7 K to 3.5 K. The greatest differences (more than 7 K) 

of 9 sites are mainly located in northern China. The satellite-

derived and observed AT averages are 282.90 K and 278.58 K 

over the sites, with the differences ranging from -4.2 K to 8.1 K. 

Many sites with differences of about 6 K are located in southern 

China. That indicates LST dominates the NLW error in northern 

China, while AT dominates the NLE error in southern China. 

 

 
Figure 6. Multi-year average difference in the LST, AT and CF 

between the satellite and site measurements (OBS) at 43 sites 

 

CERES cloud data were obtained from GEOS-4 (Bloom,2005). 

The CERES, ISCCP and site-observed CF values are 0.56, 0.62 

and 0.72 throughout China. The difference between the CERES 

and ground-observed CF ranges from -0.32 to 0.09. The 17 sites 

with largest difference (more than 0.2) are mainly located in 

northern China, which suggests the larger CF error 

accompanying with the larger NLW error contributions. In 

addition, the differences between ISCCP and ground-observed 

CF are below 0.2 at most of the sites. The CERES CF is similar 

to the ISCCP CF in southern China. It seems that the ISCCP CF 

is more accurate than CF derived from GEOS-4. Therefore, 

ISCCP CF can be a satisfactory CF input, rather than GEOS-4 

CF, for the CERES NSW algorithm. Besides the quality of 

CERES CF data, the amount of CF is also related to the 

accuracy of simulation. The CERES NSW product adopts the 

coefficients of Li et al.’s algorithm for clear skies to represent 

those of all skies (Li,1997; Wielicki,1998), the amount of CF 

among sites may affect the accuracy of shortwave algorithm. 

The CF is usually larger in autumn and winter in southern 

China, which would generate a greater error for the NSW 

algorithm. 

 

 
Figure 7. Multi-year mean of LST, AT and CF derived by 

satellite and site observations at 43 sites 

 

Quality of the CERES Rn data can be improved by error 

improvements of the input data and the retrieval algorithm. 

With respect to the dominating sources of the Rn error, it 

indicates that the input should be improved for the CERES 

retrieval of Rn. Specifically, CF and LST should be improved 

when considering the results of the sensitivity analyses above. 

Although AT is insensitive for the algorithm, it needs 

improvement because of its large AT input error, especially in 

southern China. Specially, the CF and LST errors should be 

decreased in northern China, and the AT error should be 

decreased in southern China. ISCCP DX product is another 

satisfactory cloud product that can be used in the retrieval 

procedure. It is not necessary to improve TPW because of its 

weak error contribution for the Rn error. For CERES NSW data 

production, the coefficients of Li et al.’s algorithm should be 

reselected under all sky instead of clear sky according to the 

cloud property, especially in situation of abundant cloud. The 

qualities of atmosphere profile and cloud property (Gupta et 

al.’s algorithm) need to be improved for NLW in northern 

China.  

 

4. CONCLUSIONS 

This study evaluates CERES radiation dataset errors under all 

sky conditions from July in 2000 to December in 2007 in China. 

The retrieval input parameters and the surface-observed net 

radiation data at 43 CMA ground radiation sites (11 level-1 

sites and 32 level-2 sites) in China are used for analysis. The 

study quantifies the contributions of environmental parameters 

to CERES Rn product error and reveals the retrieval algorithm 

errors. It also provides some guides for the improvement of the 

Rn product. 
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CERES net radiation algorithms are highly sensitive to TPW, 

CF and LST. In the view of 11 level-1 sites, CF, LST, AT and 

residuals are main Rn error sources, with error contributions of 

~-20 W/m2, ~15 W/m2, ~10 W/m2 and ~ 10 W/m2 (NSW/NLW), 

respectively. Furthermore, TPW has weak influence on Rn error. 

The contributions of TPW, AT, CF and LST are -4.17 W/m2, 

13.09 W/m2, -18.51 W/m2, and 18.88 W/m2 for the 43 sites. In 

details, the TPW error has weak contribution to the NSW error, 

while the Li et al.’s algorithm errors (inducing NSW error of 

general more than 10 W/m2) dominate the error. The LST and 

CF are the largest NLW error sources, especially in northern 

China. The AT influences the NLW greatly in southern China. 

The Gupta et al.’s algorithm error or the error contribution of 

atmosphere profile (cloud property) is less in southern China. 

Based on the analyses of error contributions, in order to 

improve the quality of CERES Rn data, the CF (AT) error in 

northern (southern) China should be decreased, and the LST 

error in western China should be decreased. In additional, the Li 

et al.’s algorithm should be reselected under all sky in the data 

production, especially in situation of abundant cloud. The 

qualities of atmosphere profile and cloud property (Gupta et 

al.’s algorithm) also need to be improved for NLW in northern 

China. 
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