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ABSTRACT: 

 

RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial 

integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the 

strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of 

RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is 

applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence 

are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 

3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. 

Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of 

the proposed method 
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1. INTRODUCTION  

In planetary exploration rover missions, accurate localization of 

the rover and mapping of the surrounding terrain are essential 

for safe and efficient execution of exploration tasks, such as 

traverse planning, hazard avoidance and target approaching. 

Simultaneous localization and mapping (SLAM) is the key 

technology to create a reliable 3D map by estimating the camera 

pose accurately. Stereo vision based rover localization method, 

which is called visual odometry (VO), has been successfully 

applied in the 2003 Mars Exploration Rover (MER) mission to 

reduce position errors accumulated by dead-reckoning 

localization. In Chang’e-3 mission, cross-site visual localization 

is also applied for rover localization. However, rational SLAM 

always depend on images of stereo cameras, the method is 

almost invalid when rover located at poorly textured areas. 

 

RGB-D camera, consisting of a RGB camera and a depth 

camera, is a new type of sensor that can directly and 

simultaneously obtain both visual texture information and per-

pixel depth information. It allows the capture of depth and color 

information at high data rates. Therefore, RGB-D camera has a 

natural advantage for visual-based localization and mapping.  

Recently, many researches are focused on dense mapping and 

simultaneous localization and mapping (SLAM) with RGB-D 

camera. (Dryanovski et al., 2013; Hu et al., 2012; Whelan et al., 

2013, 2015). The Kinect-Fusion algorithm of Newcombe et al. 

(2011) is one of the most notable RGB-D-based 3D 

reconstruction systems of recent times. Huang et al. (2011) 

developed a RGB-D SLAM method in which sparse bundle 

adjustment (SBA) is used for global consistency by minimizing 

the matching errors of the visual FAST feature correspondences 

between frames. Henry et al. (2012) introduced a RGB-D 

Mapping framework that can generate dense 3D maps of indoor 

environments despite the limited depth precision and field of 

view provided by RGB-D cameras, the system utilizes a novel 

joint optimization algorithm combining visual features and 

shape-based alignment. Hu et al. (2012) proposed a switching 

based algorithm to heuristically choose between RGB-BA and 

RGBD-BA based local maps building, and a low cost and 

consistent optimization approach is used to join these maps. 

based on a novel GPU implementation of an existing RGB-D 

visual odometry algorithm. Dryanovski et al. (2013) presented a 

real-time visual odometry and mapping system for RGB-D 

cameras, which used a probabilistic framework to optimize the 

camera pose estimation. Whelan et al. (2013) presented a 

system for improved RGB-D camera pose tracking that yields 

high quality color surface models with low visual artifacts. 

Further, Whelan et al. (2015) presented a real-time dense 

SLAM system which makes use of a dense every-frame 

volumetric fusion frontend for camera pose estimation and 

surface reconstruction in combination with a non-rigid map 

deformation backend to correct the mapped dense surface upon 

loop closure. Moreover, a new method of RGB-D camera 

SLAM is proposed based on extended bundle adjustment with 

integrated 2D and 3D information on the basis of a new 

projection model (Di et al.,2016). 

 

The remarkable advantages of these systems lie in the high 

mobility and low cost. However, RGB-D sensors have some 

significant drawbacks with respect to dense 3D mapping. These 

sensors only allow measurement ranges of a limited distance 

and a limited field of view, making the point cloud noisy and 

loss of details. This may cause details of far range loss due to 

lack of the depth information needed to constrain ICP (iterative 

closest point) alignments. To determine how the overlap of 
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several infrared beams affects the tracked position of the user, 

Oliver et al. (2016) studied the precision of collected data using 

multiple RGBD sensors. Tang et al. (2016) presented a novel 

approach to integrate the depth scene and RGB scene 

geometrically to enlarge the measurement distance of RGB-D 

sensors and enrich the details of model generated from depth 

images. To enhance the quality of depth efficiently, Lee et al. 

(2017) proposed a method which consists of an image 

segmentation algorithm to extract object regions and a weighted 

linear combination of spatial filtering algorithms. 

 

In planetary exploration, the complex conditions of illumination 

and surface texture may make the traditional methods which 

only depend on visual feature tracking infeasible. In this paper, 

we proposed a method based on RGB-D camera by integrating 

depth and image sequences for planetary rover mapping. 

Results of field experiment is given to verify the accuracy and 

effectiveness of this new method. 

 

The rest of this paper is structured as follows: Section 2 

presents and specifies the proposed method; Experimental result 

is presented in Section 3. Finally, conclusions and suggestions 

for future work are given in Section 4. 

 

2. METHOD 

The flowchart of our method is shown in Figure 1. First, the 

strict projection relationship among 3D space, depth data and 

RGB data is established based on the imaging principle of 

RGB-D camera. As there exist holes in depth images, depth 

images are enhanced. And based on a precise calibration for 

both of IR and RGB cameras, the relationship between the 

depth and RGB camera are obtained. Then, an extended bundle 

adjustment (BA) based SLAM method with integrated 2D and 

3D measurements is applied to the image network for high-

precision pose estimation, the method takes depth 

measurements as independent observations and integrates them 

with image measurements through the projection model and 

error model. Next, as the interior and exterior elements of  RGB 

images sequence are available, dense matching is completed 

with CMPMVS tool, and the dense model can be generated. 

Finally, according to the registration parameters after ICP, the 

3D scene from RGB images can be registered to the 3D scene 

from depth images well, and the fused point cloud can be 

obtained. 

 

2.1 Camera calibration 

In order to obtain mapping results accurately, the RGB image 

and the simultaneously acquired depth image should be 

registered. As there exist errors of several pixels of the register 

function given in the Microsoft Kinect SDK, precise camera 

calibration is performed by the camera calibration model of Di 

et al.(2016), the lens distortion model can be represented by 

Equation(1) based on the pinhole camera model 
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where (k1, k2, k3, p1, p2)= lens distortion coefficients 

  (δx, δy) =the camera distortion along x direction and y 

direction, 

(xd, yd) = the original image coordinates of an image point 

 (x,y) = the image coordinates after distortion correction. 
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Figure 1. Flowchart of the integrating mapping method 

 

Coordinate systems o-xyz and or-xryrzr of the depth camera and 

the RGB camera are defined such that the z(zr) axis points along 

the optical axis, the x(xr) axis is horizontal to the right 

(perpendicular to the plane z = 0), and the y(yr) axis forms the 

right-hand coordinate system, a 3×3 rotation matrix R and a 

translation vector T(XS,YS, ZS) are used to represent the relative 

relationship between the RGB camera and the depth camera. 

 

Supposing that there is an object point (X, Y, Z), the projected 

point on the depth image is (xD, yD)  the depth value obtained by 

depth camera is d 
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Taking the depth camera coordinate system as the reference 

coordinate system, the projected points on the RGB image is (xR, 

yR), so that the imaging geometric models of RGB camera is: 
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where (fDx, fDy) = the focal lengths of the depth camera  

 ( fRx, fRy) = the focal lengths of the RGB camera 

   (x0D, y0D) = principal points of the depth camera  

 (x0R, y0R) = principal points of the RGB camera 

Rij (i, j, =1, 2, 3) = the elements of the rotation matrix R of 

the RGB camera with respect to the depth camera  
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Based on equations (1), (2) and (3), the rotation matrix R and 

the translation vector T can be determined through camera 

calibration. 

 

The Kinect cameras are calibrated together using a planer 

checkerboard. Based on images taken from different distances 

and orientations, Camera Calibration Toolbox for 

Matlab(http://www.vision.caltech.edu/bouguet j/calib_doc/) is 

used to complete the calibration with the images. The 

calibration results include external and internal parameters, lens 

distortion coefficients  as well as the relative pose between RGB 

camera and IR camera. 

 

2.2 Depth data enhancement 

The depth values returned by the Kinect suffer from noise, and 

sometimes are absent for some points depending on the 

reflectance properties of the scene. Therefore the depth map will 

be enhanced. 

 

Assuming that at regions around the depth holes, there are valid 

depth values to fill the holes. A depth value histogram of 

neighboring pixels of depth holes is computed and the dominant 

peaks are detected in the histogram. The proposed method 

assumes that a valid depth value to fill a depth hole corresponds 

to a dominant peak that is the most distant depth value among 

multiple peaks. The detail of depth data enhancement are shown 

as follows: 

Step 1: Depth holes are detected to make a binary map, B that 

indicates pixels with unknown depth information as 0 (black). 

 

Step 2: 8-connectivity is used to label depth holes. To decide a 

neighboring region of depth holes, validation region V is 

generated of region label map  using morphological operation. 

 

Step 3 : The histogram of valid regions of each labeled region is 

computed, dominant peaks are experimentally chosen as peaks 

that have pixels more than 10% of the total number of pixels in 

the region. 

 

Step4 : An average value of dominant depth values is used as 

threshold value, a median of depth values which are greater than 

the threshold is used to fill depth holes. 

 

The depth hole filling is a block-wise process. A uniform depth 

value on invalid region may cause natural artifact. Therefore, 

we filter the initial depth map by a depth color cross-bilateral 

filter to remove the artifact and refine the initial depth map. The 

final depth map is filtered as 
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where  f(p, q) = domain term that measures the closeness of the 

pixels, p and q 

g(.) = an depth range term that measures the pixel 

similarity of the modeled depth map 

   h(.) = an intensity term that measures the intensity 

similarity.  

Ωp =denotes the spatial neighborhood of position p. 

 

2.3 Extended bundle adjustment 

Bundle adjustment of the image network, which is the technique 

of refining a visual reconstruction to produce jointly optimal 3D 

structure and orientation parameters estimated by using accurate 

projection model, statistical error models and well-developed 

quality control methodology [35, 36], is used to optimize the 

initial exterior orientation result. Constructing the projection 

model and error model of RGB-D camera is the key to achieve 

optimal estimation.  

 

In order to calculate the initial exterior orientation calculation, 

firstly 2D and 3D feature points are automatically extracted and 

matched between consecutive frames to build a continuous 

image network. 2D features are detected in the registered 

images and 3D features are re-projected to the registered images, 

so that all the 2D features and 3D features have the image plane 

coordinates values and the depth measurement values, and 

matching errors are detected using RANSAC. These matched 

feature points are used as tie points to link consecutive frames 

to build a continuous image network. Then based on the 2D and 

3D features, the rotation matrix R and translation vector T 

between the first frame and next frame are recovered through by 

SVD. 

 

The projection model of a RGB-D camera represents the 

relationship of an object point in the real world and its 

measurements in the RGB-D images. There are two types of 

measurements: image coordinates from the RGB-image and 

depth values from the depth image. The camera pose is R and 

T=[Xs, Ys, Zs] which express the relationship between the world 

coordinate system and the local camera coordinate system For 

an object point p=[X,Y,Z], its image plane coordinates is (x,y) 

and the depth value is d. 

 

According to the collinearity equation model,  the following 

equation is obtained 
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where   (x0,y0) = the coordinate of principal point  

 (fx, fy) =  the focal length of the depth camera.  

 

In the projection model, the relationship between the 

measurement data and the unknowns is nonlinear. The 

linearized equation can be represented as: 
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Rewrite equation (6) into a matrix form: 

 

    ,V AX L P      (7) 

 

where P = the weight matrix of the image plane coordinates and 

the depth measurement values.  
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The weight of the measurement data is inversely proportional to 

the variance of its measurement accuracy. The measurement 

accuracy of the image plane coordinates depends on the 

matching accuracy of the SIFT keypoints which is up to sub-

pixel level (0.3 pixel is taken in this research). The depth 

measurement accuracy can be computed by the equation given 

by Di et al. (2016). 

 

Through the above steps, the error model of RGB-D camera is 

built and the camera pose of each frame can be refined by least 

squares solution of Equation (7). 

 

2.4 Dense mapping with sequence images 

After bundle adjustment, the point cloud from depth data can be 

merged. However, the depth sensors capture depth information 

based on the concept of structured light pattern and time-of-

flight, and the measurement is highly related to the material and 

structure of objects. There would be some holes when modeling 

objects with smooth surfaces or low reflection certain materials 

or scene structures which do not reflect infra-red (IR) light. 

Moreover, the point cloud at far range are of low accuracy.  

 

The sequence images can be used to for dense matching with 

CMPMVS tool. Camera positions derived from Bundler are 

used as input, CMVS then decomposes overlapping input 

images into subsets or clusters of manageable size, while PMVS 

is used to reconstruct 3-D data from these individual clusters 

(Furukawa and Ponce, 2007). The core idea of PMVS can be 

understood as the following steps: Firstly, the feature points in 

each image are extracted using Harris + DoG operator, and the 

feature point pairs are matched. Under the condition that the 

epipolar geometry constraint is satisfied, the triangulation 

method is adopted. A rectangular patch centered on a three-

dimensional space point is generated. The patch is called a seed 

patch with a normal vector as a specific direction; then two 

similar characteristics of the adjacent point cloud patch are used 

as conditions (normal vector and space point location ), step by 

step to diffuse and reconstruct the similarity point clouds of the 

seed point cloud piece; finally, after the diffusion is completed, 

a filtering operation is required to remove the error patch that 

does not meet the consistency.  The result of this processing is a 

significant increase in point density; 

 

2.5 Point cloud matching 

Two points pertaining to a point cloud taken by Kinect can have 

a minimal distance of about a few millimeters. It is acceptable 

to lose some precision in order to reduce all point clouds’ size, 

reducing considerably both computational time and memory 

usage. Firstly, the number of points is down sampled by using 

Voxel Grid. It divides a point cloud in boxes (“voxels”) with 

the desired width. Then, all points within a box are reduced to 

an unique point corresponding to their centroid.  

 

Point clouds taken from Kinect can have measurement errors 

that create sparse outliers. Such points can lead to errors while 

estimating local point clouds features such as surface normals. 

The outliers are removed as follows: first, mean distance from 

each point to all its neighbors is calculated. Next, assuming a 

Gaussian distribution, with a mean and a standard deviation, all 

points having their mean distances outside a certain interval are 

considered as outliers and are removed from the dataset. In our 

work, 30 neighbours are used for each point to analyse its status, 

removing all points having a distance larger than 1 standard 

deviation of the mean distance to the analysed point. 

We use the iterative closest point (ICP) algorithm (Besl and 

McKay, 1992) for registration of  point cloud by PMVS to 

depth point cloud. As represented in Equation (8), the goal of 

the ICP algorithm is to minimize the sum of square errors with 

respect to the PMVS points and the corresponding closest depth 

points. In each iteration step, the algorithm selects the closest 

points as the correspondences and re-calculates the rotation and 

translation parameters (R, t) of the rigid transformation to 

minimize the equation 

 

 2

,
1 1

min ( )
m dN N

i j
R t

i j

F d Rm t
 

       (8) 

 

Where  mi  =  coordinates of the RGB dense points 

             di  =  coordinates of the depth points 

             t = a 3*1 vector that describes the translations between 

the two datasets,  

R = a 3*3 matrix that describes the rotations between the 

two datasets. 

 

3. EXPERIMENT 

To verify the actual performance of the proposed method, a 

field experiment has been performed. Figure 2 shows the 

moving platform (model rover) used in these experiments. A 

Microsoft Kinect V2 camera which has a RGB image resolution 

of 1920*1080 pixels and a horizontal field of view of 70 

degrees was attached on the top of the camera mast. The camera 

is about 100cm above the ground. 

 

 
Figure 2. The RGB-D camera mounted on the moving platform 

 

Experiment was performed in an outdoor field to simulate the 

lunar surface. The rover travelled along a loop path with the 

origin set at [0,0]. The same image was used for the first and 

last positions to ensure that the true last camera pose was 

exactly the same as where the first image was recorded. Given 

that the loop is closed, we can use it to evaluate the accuracy. 

Figure 3 shows some typical images acquired by the RGB 

camera and the depth camera. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1369-2018 | © Authors 2018. CC BY 4.0 License.

 
1372



 

 
 

 
 

 
Figure 3. Typical RGB images 

 

Figure 4(b) shows depth images after enhancement, compared 

to the original depth images in Figure 4(a), the proposed 

method uses depth distributions of neighboring regions of depth 

holes. Due to some invalid areas, there still exist holes in 

enhanced images. 

 

   
(a)  

   
(b) 

Figure 4. (a) Initial depth images (b) depth images after 

enhancement 

 

Based on the calibrated parameters, we register the depth image 

and RGB image. The result of features detection and matching 

between registered images is shown in Figure 5. 

 
 

(a) 

 
 

(b) 

Figure 5. Features detection and matching results. (a) initial 

matching results (b) matched points after RANSAC 

 

 

 

 
(a) 

 
(b) 

Figure 6. Point cloud results. (a) initial matching results (b) 

matched points after RANSAC 

 

Figure 6(a) and (b) show the original 3D scene generated from 

depth image and the enhanced 3D scene fusing 3D information 

from RGB images and from depth images. Only a close-range 

scene with about 3.6 m maximum length can be obtained from 

the depth images. After point cloud fusing, the vertices number 

have a significant increase from 62,979 to 147,964 and the 

measurement distance can be extended to about 8 m. Thus the 

information from the RGB image sequences both enriched the 

details for the close-range model from the depth images and 

greatly broadened the mapping range of the RGB-D camera. 

 

4. CONCLUSION 

In this paper ,we proposed a method based on RGB-D camera 

by integrating depth and image sequences for planetary rover 

mapping. We focused on verifying mapping ability of RGB-D 

camera onboard a rover that could be used in a GPS-denied 

environment such as lunar and Martian surface. In outdoor 

environment with sunlight, the depth sensor may have weak 

performances, hole filling strategy and cross-bilateral filter were 

used for depth enhancement. Based on the extended bundle 

adjustment accurate pose estimation results are refined. The 3D 

scene from RGB images with PMVS tools were registered to 

the 3D scene from depth images well after ICP. Our method 
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provides an effective way to enlarge mapping distance of a 

RGB-D camera. Further research will be performed to improve 

the computational efficiency of the method. And more data will 

be used for validation of the new method. 
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