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ABSTRACT: 

 

Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents 

our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive 

Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly 

composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system 

contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) 

modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our 

vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential 

for future planetary exploration. 

 

1. INTRODUCTION 

Accurate and autonomous localization of spacecraft and rover is 

essential for planetary exploration. Traditional navigation 

method based on ground remote control system cannot achieve 

autonomous navigation in terms of communication latency and 

bandwidth limitation. While autonomous navigation can be 

achieved by GPS on Earth, there is no such positioning system 

on other planets. The optical camera has the characteristics of low 

cost, wide application range, low power consumption and large 

field of view compared with the other detection devices, thus 

vision-based navigation has become an attractive solution for 

autonomous navigation. The combination of unmanned vehicle 

platform and robust computer vision algorithms is a challenge 

task. In this paper, a binocular camera based unmanned vehicle 

platform has been built and an ARFM (Adaptive Robust Feature 

Matching) based VO (Visual Odometry) software system has 

been developed to achieve GPS-denied autonomous navigation 

for planetary exploration. 

 

2. RELATED WORK 

In 2004, NASA has launched Spirit and Opportunity (Cheng Y 

et al., 2006), after that, the Mars Science Laboratory (MSL) team 

has launched the Curiosity rover (Sumner D, 2013) in August 

2012. In 2013, China has launched Yutu (Zhou J et al., 2014), 

which has accomplished the exploration mission until 2016. ESA 

will launch Exo Mars (Griffiths A D et al., 2006) in the near 

future. Vision-based navigation had been used for planetary 

exploration in these unmanned vehicles, which proved 

successfully. However, vision-based navigation for planetary 

rover has the following challenges: 1) The images taken may 

contain scale and rotation distortions; 2) The real-time and 

accuracy requirement must be met; 3) There are some featureless 

areas which may decrease the feature matching accuracy. Thus, 

the matching result of traditional feature extraction algorithms, 

such as Harris (Stephens M, 1988), Shi-Tomasi, Susan corner 

detection algorithm and SIFT (Scale Invariant Feature Transform) 

(David G. Lowe, 2004), are unsatisfied. Thus, real-time, accuracy 

and reliability must be taken into consideration, not only in 

hardware but also in software. 

 

3. THE BINOCULAR VISION BASED AUTONOMOUS 

UNMANNED VEHICLE 

In this paper, an unmanned vehicle platform based on binocular 

vision has been designed and built. We also developed an 

ARFM-based VO software for its autonomous navigation. This 

section will present our work in terms of both hardware system 

and the software system. 

The unmanned vehicle platform can navigate by the ARFM-

based VO software automatically in the process of walking, but 

manually stop or start is needed. 

 

3.1 The hardware system 

The unmanned vehicle we designed is a ground mobile robot with 

three independent hierarchical layers, as is shown in Fig. 1. The 

upper layer is made up of a binocular camera and a pan-and-tilt, 

which is used to receive the image sequence and precisely control 

the attitude of the camera. The middle layer is a master machine 

for processing the image streams transferred from the upper and 

issuing instructions, for example, moving forward or backward. 

The lower layer is a tracked chassis which can drive this 

unmanned vehicle according to the instructions received form the 

middle. The maximum speed is set to 0.1m/s because of the rough 

surface of planetary. 

 
Fig. 1 The unmanned vehicle with three independent 

hierarchical layers 
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3.2 The ARFM-based VO software system 

The software system contains four modules: camera calibration, 

ARFM-based 3D reconstruction, position and attitude calculation, 

BA (Bundle Adjustment) modules. Fig. 2 shows the workflow of 

the VO software system. 

Camera 
Calibration 

Module

Parameters

ARFM-based 3D 
Reconstruction 

Module

POsition and 
Attitude 

Calculation Module

BA 
module

SURF+FLANN AT

PNP

Image 
Sequence 

 
Fig. 2 The workflow of the ARFM-based VO software system. 

 

3.2.1 Camera Calibration Module: Camera calibration is a 

necessary step in 3D reconstruction in order to extract metric 

information from 2D images. This paper performs the calibration 

of binocular stereo measuring system reliably by Zhang’s 

algorithm (Zhang Z, 2002), and gets the extrinsic and intrinsic 

parameters. In Zhang’s algorithm, a 2D point is denoted by  
[𝑥 𝑦]𝑇, and a 3D point is denoted by [𝑋 𝑌 𝑍]𝑇. A camera is 

modeled by the usual pinhole: the relationship between a 3D 

point and its image projection is given by 

 

 𝑠 [
𝑥
𝑦
1
] = 𝐴[𝑅 𝑡] [

𝑋
𝑌
𝑍
1

],with A = [

𝛼 𝑐 𝑢0
0 𝛽 𝑣0
0 0 1

] (1) 

 

where 𝑠 is an arbitrary scale factor; [𝑅 𝑡], called the extrinsic 

parameters, is the rotation and translation which relates the world 

coordinate system to the camera coordinate system; A is called 

the camera intrinsic matrix, and (𝑢0 𝑣0) are the coordinates of 

the principal point, α and β the scale factors in image 𝑢 and 𝑣 

axes, and 𝑐  the parameter describing the skewness of the two 

image axes. 

 

3.2.2 ARFM-based 3D Reconstruction Module: In this 

paper, we propose an ARFM algorithm to guarantee the accuracy 

and reliability, and adapt to the changed of environment as well. 

In this algorithm. We use SURF (Speed-up Robust Features) 

(Bay et al., 2008) to find point correspondences between two 

images. In order to reduce the computational cost, SURF takes 

the integral image, which represents the sum of all pixels in the 

input image I within a rectangular region formed by the origin 

and x. The integral image 𝐼Σ(x)  at [𝑥 𝑦]𝑇 is 

 

  𝐼Σ(x) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑗≤𝑦
𝑗=0

𝑖≤𝑥
𝑖=0  (2) 

 

The Hessian-based detectors are scale-invariant, moreover, are 

more stable and repeatable than their Harris-based counterparts, 

so Hessian is used to detect feature points.  

 

Given a point x = (x, y)  in an image I , the Hessian matrix 

Η(x, σ) in x at scale σ is defined as follows  

 

 Η(x, σ) = [
𝐿𝑥𝑥(x, σ) 𝐿𝑥𝑦(x, σ)

𝐿𝑥𝑦(x, σ) 𝐿𝑦𝑦(x, σ)
] (3) 

 

where 𝐿𝑥𝑥(x, σ) is the convolution of the Gaussian second order 

derivative 
𝜕2

𝜕𝑥2
𝑔(𝜎) with the image I in point x, and similarly for 

𝐿𝑥𝑦(x, σ) and 𝐿𝑦𝑦(x, σ). 

SURF used box filter to guarantee scale-invariance and integral 

image to avoid iterative calculation, so it can extract feature 

points quickly. According to the neighbourhood of these points, 

descriptors which are robust to noise, detection displacements 

and geometric and photometric deformations, are generated. The 

descriptor is similar to the gradient information extracted by 

SIFT, but use only 64 dimensions, which reduces the time for 

feature computation. After that, the descriptor vectors between 

different images is matched based on Euclidean distance. 

But SURF is high error matching, so optimized bothway FLANN 

(Fast Library for Approximate Nearest Neighbors) (M Muja et 

al., 2009) is used to match SURF descriptor. Given a set points 

P = {𝑝1, … , 𝑝𝑛}  which is extracted from left image and Q =
{𝑞1, … , 𝑞𝑛} which is extracted from right image, and dist(𝑝𝑖 , 𝑞𝑗) 

which is the Euclidean distance from 𝑝𝑖 to 𝑞𝑗. Then the nearest 

neighbour dist(𝑝𝑖 , 𝑞𝑗)  and the second-nearest neighbour 

dist(𝑝𝑖 , 𝑞𝑘) can be calculated. dist(𝑝𝑖 , 𝑞𝑗) is the optimal value  if 

dist(𝑝𝑖 , 𝑞𝑗) is far less than dist(𝑝𝑖 , 𝑞𝑘) so that  (𝑝𝑖 , 𝑞𝑗) is a pair 

of matching points. However, if dist(𝑝𝑖 , 𝑞𝑗)  is similar to 

dist(𝑝𝑖 , 𝑞𝑘) , 𝑞𝑗  and 𝑞𝑘  is too similar to decide who is the 

matching point to 𝑝𝑖, so both points must be abandoned. Only in 

the condition of (𝑝𝑖 , 𝑞𝑗) and (𝑞𝑗 , 𝑝𝑖) is the same can be matched. 

In order to guarantee precision, RANSAC is used to eliminate the 

mismatched feature points. In this way, the accuracy and 

reliability requirement can be met. Meanwhile, scale and rotation 

distortions can be overcame.  

Traditional matching method uses a FT (fixed Threshold) 

algorithm. To adapt the environment variation, we proposed an 

AT (Adaptive Threshold) algorithm that can automatically adjust 

the threshold according to the variances of image.  

 

 Gray =
∑ ∑ 𝐺(𝑖, 𝑗)𝑁

𝑗=1
𝑀
𝑖=1

𝑀 ×𝑁
 (4) 

   

 𝜎2 =
∑ ∑ [𝐺(𝑖, 𝑗) − Gray]2𝑁

𝑗=1
𝑀
𝑖=1

𝑀 ×𝑁
 (5) 

 

where G(𝑖, 𝑗) are the gray values of current image and Gray is the 

average gray value of current image, 𝑀 and 𝑁 are the height and 

width of current image.  𝜎2  is the variances of current image, 

which can be used to adjust the threshold automatically. And then 

the 3D point cloud is generated using the calibration and the 

feature matching results. The focus length of camera is denoted 

by 𝑓, and the baseline is denoted by 𝑇. The value of parallax is 

denoted by  disp. So the depth of 3D point is calculated by 

 

 𝑍 = 
𝑇𝑓

disp
 (6) 
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3.2.3 Position and Attitude Calculation Module: In this 

module, the current pose of camera is computed according to the 

3D point cloud generated from 3D reconstruction module and the 

current 2D image projection point based on a PNP (Perspective-

N-Point) (Fischler et al., 1981) algorithm. To reduce the 

accumulative error, this paper uses 3D points within the FOV 

(Field of View) from all relevant images to build a local map. As 

is seen in Fig. 3, the straight lines represent the 3D reconstruction, 

thus the 3D coordinates can be calculated, and the dotted lines 

represent the 2D image point projected on current position. 

3D points within 
the FOV

Current 
Position

Local Map

Previous Position

Fig. 3 The principle of position and attitude calculation using 

local map. 

PNP is as follow: 

First of all, original R and t are calculated from 4 points according 

to perspective projection model, and the image coordinates 

𝐶𝑗
𝑐 , 𝑗 = 1,2,3,4 are calculated according to.  

 

 

{
 
 

 
 ∑𝛼𝑖𝑗[𝑓𝑥𝑋𝑗

𝑐 + 𝑍𝑗
𝑐(𝑐𝑥 − 𝑢𝑖)] = 0

4

𝑗=1

∑𝛼𝑖𝑗[𝑓𝑥𝑌𝑗
𝑐 + 𝑍𝑗

𝑐(𝑐𝑦 − 𝑣𝑖)] = 0

4

𝑗=1

 (7) 

 

Then, minimize 

 

 Error(𝛽) = ∑ |‖𝐶𝑖
𝑐 − 𝐶𝑗

𝑐‖
2
− ‖𝐶𝑖

𝑤 − 𝐶𝑗
𝑤‖

2
|4

𝑖,𝑗=1,𝑖<𝑗   (8) 

 

with the other points according to Gauss-Newton algorithm, thus 

take 𝐶𝑗
𝑐 , j = 1,2,3,4  and 𝑃𝑖

𝑐 . Finally, R  and t  can be obtained 

from 𝑃𝑖
𝑐.  

 

3.2.4 BA Module: BA imposes geometrical constraints over 

multiple frames, thus providing a global optimal estimate by 

minimizing the re-projection errors. In this study, global BA 

(Eudes et al., 2010), which takes the 3D point clouds and all 

camera poses together at once, is used. The positions of 

unmanned vehicle and 3D point clouds, including rotation vector 

and translation vector. And the relationship between positions are 

noted as edges to build graph. The re-projection errors can be 

minimized by LM (Levenberg-Marquardt) (Marquardt, 1963) 

and Gauss-Newton algorithm. The principle of BA is shown in 

Figure 4. 

CP1 CP2 CP3

PC1
PC2 PC3

CP4

PC4

 
Fig. 4 The principle of BA. 

 

4. EXPERIMENT 

In this study, the performance of the matching algorithm and the 

ARFM-based VO software system are tested. First, an algorithm 

experiment is performed, which proved ARFM is useful to 

improve the matching precision. Then, two experiments have 

been conducted to test the VO software. Our platform is tested by 

the indoors image sequence captured by binocular camera 

equipped on our platform using internal and external parameters, 

which are approached by calibration. In the other experiment, the 

ARFM-based VO software system is tested using an open dataset: 

KITTI, which are outdoors image sequence captured by 

binocular camera equipped on moving cars. 

 

4.1 Experiments 

This experiment section is made up of two parts: the comparison 

results of matching using our adaptive threshold method: AT and 

the traditional fixed threshold method: FT, the comparison of 

different matching strategies. 

 

4.1.1 The comparison results of matching with AT and FT: 

As is seen in Fig. 5, the number of matching points is increasing 

and the matching accuracy is reducing with the increasing of 

threshold value, so it is necessary to take an AT to balance them. 

The AT of Fig. 6(a) is around 0.375, which is the variance of the 

image, according to the result shown in Fig. 5(a). Likewise, the 

AT of Fig.6 (c) is around 0.734. 

 
(a) 

 
(b) 

Fig. 5 The change in matching points and matching accuracy 

with the increasing of variance. (a) The result of Fig. 6(a). (b) 

The result of Fig. 6(c) 

The traditional algorithm, which sets the threshold value to a FT 

(fixed threshold), leads to mismatching points or loss of matching 

points. In the example shown in Fig. 6, the matching result using 

the AT (0.375) is Fig. 6(a), and the matching result using the FT 

(0.6) is Fig. 6(b).The comparison between the AT and FT shows 

that when the threshold is set much larger than the AT, both the 

matching points and correctly matching rate are reduced 

obviously. 
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(a)Our method(AT) 

 
(b)Traditional method(FT) 

Fig.  6 The comparison between using the AT and the larger 

FT. (a) Matching result with AT = 0.375, the number of 

matching points is 175 and the correctly matching rate is 

87.02%. (b) Matching result with FT =0.6, the number of 

matching points is 83 and the correctly matching rate is 

74.28%. 

In the example shown in Fig. 7, the adaptive threshold is larger 

compared with the value in Fig. 6. And the matching result 

using the adaptive threshold (0.734) is Fig. 7(a), the matching 

result using the fixed threshold (0.6) is Fig. 7(b).The 

comparison between the adaptive threshold and fixed 

threshold shows that when the threshold is set much smaller 

than the adaptive, the number of correctly matching points is 

less. 

 
(a)Our method(AT) 

 
(b)Traditional method(FT) 

Fig.  7 The comparison between using the AT and the 

smaller FT. (a) Matching result with AT = 0.734, the 

number of matching points is 212 and the correctly matching 

rate is 78.24%. (b) Matching result with FT =0.6, the number 

of matching points is 172 and the correctly matching rate is 

71.9%. 
So, we can draw the conclusion that taking the variance, which is 

calculated according to the image, as threshold value, contributes 

to guarantee the maximization of both the matching points and 

matching accuracy, and set the threshold value as variance of 

image dynamically is necessary. 

 

4.1.2 The comparison of different matching strategies: As 

discussed, ARFM is made up of SURF, FLANN, AT and 

RANSAC. The matching result of four strategies is shown in Fig. 

8, and the statistics is shown in Fig. 9. The number of matching 

points and correctly matching points is reduced, but the matching 

rate is increasing with four strategies: SURF, SURF+RANSAC, 

SURF+FLANN, SURF+FLANN+RANSAC, so ARFM has the 

highest matching accuracy in these methods. 

 
(a) Matching result of SURF 

 
(b) Matching result of SURF+RANSAC 

 
(c) Matching result of SURF+FLANN 

 
(d) Matching result of SURF+FLANN+RANSAC 

Fig. 8 The matching result using four strategies. 

Fig.  9 The statistics of matching result with four strategies. 
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Fig. 10 shows the trajectories of four statistics and ground truth, 

and Fig. 11 shows the translation error and run time of four 

strategies. From the comparison, we observe that SURF is the 

worst algorithm not only in translation error but also in run time. 

SURF+FLANN is of higher precision relativity, while the speed 

is the highest. The run time of SURF+RANSAC and 

SURF+FLANN+RANSAC is similar, but the precision of 

SURF+FLANN+RANSAC is higher. So, if the precision is the 

most important, SURF+FLANN+RANSAC is the best choice, 

and if the run time is the most important, SURT+FLANN is the 

best choice. 

Fig.  10 The trajectories of four methods and ground truth. 

Fig.  11 The translation error and run time of four methods. 

 

4.2 Indoor VO Experiment 

In this experiment, a specifically designed calibration board is 

made to calibrate. The board is full of black and white squares 

whose size is 210×110cm. Each square is 10×10cm so that the 

calibration board has 20×10 corners. By using the unmanned 

vehicle we built, 63 pairs of stereo calibration images were 

collected, which are shown in Fig.12, and the results of 

calibration are showed in Fig.13. Fig. 13(a) is a corner detection 

of the calibration board. Fig. 13(b) shows a rectified result. 

Meanwhile, internal and external parameters of each camera is 

obtained. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig.  12 Images of the calibration board 

 
(a) Corner detection. 

 
(b) A rectified result. 

Fig.  13 The result of stereo calibration.  

Then, we tested our platform indoors on 16 December. 2017. In 

this experiment, an image sequence of 6 pairs with 1624×1234 

resolution was captured. Some of the images are shown in Fig. 

14. The experimental results are shown in Fig. 15. 
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(c) 

 
(d) 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10

11

x [m]

z
 [

m
]

Ground Truth

VO(SURF)

VO(SURF+FLANN)

VO(SURF+RANSAC)

VO(SURF+FLANN+RANSAC)

Sequence Start

0

50

100

150

200

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

SURF SURF
+FLANN

SURF
+RANSAC

SURF
+FLANN

+RANSAC
Translation error(m/10m)

Run Time(s/frame)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1439-2018 | © Authors 2018. CC BY 4.0 License.

 
1443



 
(e) 

 
(f) 

Fig.  14 Images the unmanned vehicle captured to perform the 

first experiment. 

 
Fig.  15 The result of ARMF-base VO system using the images 

we captured. In this coordinates, the blue line represents the 

path calculated by the ARMF-base VO system, and the black 

point represents the start position. 

 

4.3 Outdoor VO Experiment  

An image sequence of 100 pairs with 1226×370 resolution was 

tested using ARFM-based VO system, some experiment images 

are shown in Figure 16. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 16 Stereo images downloaded from KITTI. 
The experimental results are shown in Fig. 17. Fig. 17(a) shows 

the feature points extracted in this image, and all these points 

have been reconstruction, so that the blue circle represents the 

nearest feature point and the red circle represents the farthest one. 

From the trajectories in Fig. 17(b), it can be seen that the scale 

propagation error in about 75 meters is about 0.85 meters, but in 

about 140 meters, it is reduced to 0.3 meters. From the 

calculations, we conclude that the average translation error is 

about 0.53 meters per 100 meters. So we can draw the conclusion 

that ARFM-based VO system contributes to eliminate the 

accumulative error of translate error, and the accuracy of this 

platform is 0.53%, which can meet the requirement of planetary 

exploration. This platform takes 7.25s to process a pair of image, 

so it can location itself per 0.725 meters, which can be used for 

planetary exploration. 

 
(a) 

 
(b) 

Fig. 17 The result of ARMF-based VO system using stereo 

images download from KITTI dataset. (a) An image used to 

show the feature points. In this image, the green circle represent 

the feature points which have been matched, the blue circle 

represents the nearest feature point and the red circle represents 

the farthest one. (b) The comparison of two trajectories. The red 

line represents the ground truth, the blue line represents the path 

calculated by the ARMF-based VO system, and the black point 

represents the start position. 
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5. CONCLUSION 

In this paper, an autonomous GPS-denied unmanned vehicle 

platform based on binocular vision has been designed and built 

for planetary exploration. An ARMF-base VO system containing 

four modules, has been developed to achieve vision-based GPS-

denied autonomous navigation. The algorithm experiment proves 

that our ARMF is the best choice applied to our unmanned 

vehicle. Then, experiments using both outdoor images from open 

dataset and indoor images captured by our vehicle demonstrate 

that our unmanned vehicle, which combined both hardware and 

software system, is able to achieve autonomous localization and 

has the potential for future planetary exploration. 
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