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ABSTRACT: 

 

Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was 

achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-

consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over 

the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for 

improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov 

Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change 

detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the 

previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with 

multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) 

it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m 

Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the 

capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first 

attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.  

 

 

*  Corresponding author 

 

1. INTRODUCTION 

In recent years, earthquake or rainfall-induced landslide hazard 

frequently occurred in China, leading to heavy casualties and 

property losses (Xu, 2012a). For landslide hazard assessment 

and mitigation, landslide inventory mapping recording 

geographic location, occurrence date, magnitude and type of 

landslide is required. In most previous studies, landslide 

inventory mapping was achieved by visual interpretation of 

aerial photos or remote sensing images, which however is labor-

intensive and time-consuming. Over the past few years, 

enormous methods have been proposed for landslide mapping 

from high resolution (HR) and even very high resolution (VHR) 

remote sensing images. However, limitations remain in terms of 

their applicability and accuracy in different study areas and data.  

 

1.1 Previous Work 

Previous work can be roughly divided into two parts, pixel-

based and object-based.  

Pixel-based methods generally take advantage of the spectral 

characteristic of every pixel. Lu et al. (2004a) provided a 

comprehensive review on change detection approaches in 

remote sensing community. In Van Westen and Getahun 

(2003a), multi-temporal landslide maps were obtained by visual 

interpretation of sequential aerial photos analyse evolution of 

the Tessina landslide in Italy. In Mondini et al. (2011a), four 

change variables related to landslides occurrence were selected 

to calibrate landslide classification models. In Hervas et al. 

(2003a), automatic change detection from bitemporal aerial 

photographs was used to map landslides in Italy. In Li et al. 

(2016a), change detection and level set method using 

bitemporal aerial photographs were used to map landslides in 

Hong Kong. In addition to change detection methods, some 

other methods are proposed for landslide inventory mapping. In 

Yang et al. (2014a), multi-temporal satellite images were used 

to obtain the landslide distribution map in Sichuan earthquake 

area on May 12, 2008. In Chen et al. (2014a), random forest 

was applied to detect forested landslides. However, pixel-based 

methods only consider spectral information and ignore the 

similarity among adjacent pixels, which causes a lot of salt and 

pepper noise in the final mapping result (Hölbling, 2017a). 

 

Object-based methods regard adjacent pixels with similar 

spectral, spatial, texture information as an object. A large 

number of object-based landslide inventory mapping methods 

were developed using eCognition software. In Martha et al. 

(2010a), an object-oriented method using multispectral data and 

a digital terrain model were used to detect landslides. In Lu et al. 

(2011a), a semi-automatic object-oriented approach using 

bitemporal VHR images was applied to map the Messina 

landslide in Italy. In Stump et al. (2011a), object-oriented image 

analysis was combined with the random forest algorithm for 

landslide mapping. In Rau et al. (2014a), a semi-automatic 

object-oriented technology with multi-sensor and multispectral 

imagery and DEM was proposed for landslide recognition. In 
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Pradhan et al. (2015a), an object-oriented classification method 

with fused data between LiDAR and VHR imagery was used to 

detect landslides.  

 

Although object-based method is widely used for landslide 

inventory mapping, limitations still remain, such as: 1) it is 

difficult to find general principles to delineate different 

landslides because of variant features existing; 2) the labour-

intensive parameter tuning causes the low automation degree of 

landslide mapping; and 3) the accuracy of landslide mapping 

can be further improved. 

 

1.2 Our Work 

Li et al. (2016a) proposed a change detection-based Markov 

random field (CDMRF) for landslide inventory mapping from 

0.5 m bitemporal aerial orthophotos over Lantau island, Hong 

Kong. Experimental results demonstrated that this method can 

map landslides accurately and efficiently. However, this method 

is far from perfect. We found that it has difficulty in mapping 

complex and low-contrast landslides from some remote sensing 

images. To improve the applicability and accuracy of CDMRF 

method over large areas, we made a further development of the 

method proposed in (Li et al. 2016a) and proposed a new 

CDMRF method for landslide inventory mapping from 

bitemporal 10 m Sentinel-2 multispectral images.  

 

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area is located on Jiuzhaigou Country, northeast of 

Tibetan Qiang Autonomous Prefecture of Ngawa, Sichuan 

Province, China, with an area about 16.5 km2. This area features 

a subtropical monsoon climate with an annual average 

temperature of 12.7 ℃ and an annual precipitation of 550 mm. 

The terrain is dominated by mountains covered with dense 

vegetation with an annual average altitude of 4000 m (Liu, 

2017a). An earthquake of 7.0 magnitude occurred in Jiuzhaigou 

Country at 21:19:46 Beijing Time on August 8, 2017. The 

epicenter is located at 33.20°N and 103.82°E, and the depth of 

focus is 20 km. The major earthquake induced a large number 

of shallow landslides which caused vegetation destruction and 

mountains exposed over seismic hazard areas. The landslides in 

the study area were mainly distributed along National Highway 

544 from Huanglong Airport to Zhangzha Town.  

  

2.2 Data 

Sentinel-2 satellite is a multi-spectral Earth observation system 

implemented by Global Monitoring for Environment and 

Security (GMES) and jointly organized by the European 

Commission (EC) and the European Space Agency (ESA) 

(Drusch, 2012a). This system includes two polar-orbiting 

satellites (i.e., Sentinel-2A and Sentinel-2B) in the same orbit 

but phased at 180°to each other. Together, the two satellites 

have a high revisit time of 5 days. The satellites carry the Multi 

Spectral Instrument (MSI) that samples 13 spectral bands (10 m, 

20 m, 60 m bands) from visible and near-infrared (VNIR) bands 

to short wave infrared bands (SWIR). Level-1C and Level-2A 

product levels are freely available to users for land monitoring, 

emergency management and risk mapping (ESA, 2015).  

The cloud-free pre- and post-event Sentinel-2 Level-1C 

multispectral images were acquired at 3:45:41 UTC on July 29, 

2017 and 3:45:31 UTC on September 7, 2017, respectively and 

they were downloaded from the ESA Sentinel Online website 

(The Copernicus Open Access Hub, 2018). Four bands, i.e., the 

near-infrared, red, green and blue bands with 10 m spatial 

resolution, were used in this study. 

 

A landslide inventory map manually digitized from the pre- and 

post-event Sentinel-2 images was used as a reference for 

accuracy assessment.  

                            

  
(a)                                               (b) 

 

  
(c)                                              (d) 

 

Figure 1. Test data. (a) Pre-event Sentinel-2 image. (b) Post-

event Sentinel-2 image. (c) Manually digitized reference 

landslide inventory map. (d) Landslides in (c) overlaid on the 

post-event image. 

 

3. METHODOLOGY 

The proposed method includes four sub-steps. First, 

atmospheric correction was performed on Level-1C product to 

obtain Level-2A product, i.e., Bottom of Atmosphere (BOA) 

reflectance images. Then the near-infrared (NIR) and red bands 

of the pre- and post-event images were used to generate change 

detection images (CDI). Next, a multi-threshold method-based 

on CDI was used to generate training samples of landslides and 

non-landslides. Finally, the result of landslide inventory 

mapping is accomplished by using MRF. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1447-2018 | © Authors 2018. CC BY 4.0 License.

 
1448



Post-event imagePre-event image

Preprocessing

Change detection

Multi-threshold

Training sample 

mask
Markov random field

Landslide mapping

 
 

Figure 2. Flowchart of the proposed landslide mapping method 

 

3.1 Preprocessing of Remote Sensing Images 

Radiometric and geometric corrections have been carried out on 

acquired Level-1C product, including ortho-rectification and 

spatial registration. For the subsequent bitemporal images 

process and analysis, the Level-2A product was derived from 

the Level-1C products through the Sentinel-2 Toolbox.  

 

3.2 Change Detection Images 

Two image difference techniques were selected to identify 

shallow landslides between the pre- and post-event images. 

 

The first image difference technique is achieved using 

Normalized Difference Vegetation Index (NDVI) (Mondini, 

2011a). NDVI is an effective indicator of vegetation growth and 

cover (Lu, 2004a). The occurrence of shallow landslides leads 

to vegetation destruction, thus NDVI is widely used to detect 

landslides. In this study, changes in the pre- and post-event 

NDVI (δNDVI) (Fig. 3(a)) were obtained by the following 

equation (Mondini, 2011a): 

 

 

  

    
    

    

pre post

pre post

NDVI NDVI NDVI

NIR red NIR red

NIR red NIR red

   (1) 

 

where  NIR = the near-infrared band 

 red = red band 

 pre = the pre-event image 

 post = the post-event image 

 

The second image difference technique is based on principal 

component analysis (PCA). PCA converts multispectral bands 

from multi-temporal images into linear independence 

components, which can reduce noise and data redundancy and 

increase separability between bands, and the first principal 

component always concentrates the most information in images 

and other components account for lesser information (Lu, 

2004a). Similar to NDVI, four bands, i.e., the pre- and post-

event near-infrared and red bands, were used to generate four 

linear independence components (Mondini, 2011a). Through 

visual interpretation of PCA components, we found that the 

fourth component (PCA-4) (Fig. 3(c)) has a good match with 

landslides. 

 

3.3 Multi-Thresholding for Training Samples Generation 

δNDVI and PCA-4 had a high correlation with the occurrence of 

landslides, thus they are selected to generate landslides and 

non-landslides training samples. 

 

In CDI, the brighter pixels indicate larger changes which can be 

considered as landslides, and the darker pixels often change a 

little which can be considered as non-landslides. Thus, multi-

thresholding method were applied to generate training samples 

of landslides and non-landslides as the following equation 

(Xian, 2009a; Li, 2016a): 

 

 

   

   

 

1 2

1 2 1

1

*

= * *

*

  

    

  

  


    
   

DI DI

CDI DI DI DI DI

DI DI

landslide I T T

I uncertain area T T I T

non landslide I T

   (2) 

 

where  ρ(I) = brightness value of the pixel in CDI 

 μDI = mean value of CDI 

 σDI  = standard deviation of CDI 

 T1, T2 = parameters to set thresholds of training 

samples of landslides and non-landslides, and 

1, 2 T T R  

 

CDI Parameter 

 T1 T2 

δNDVI 1.8 1.5 

PCA-4 0.5 0.2 

Table 1. Parameters of multi-threshold method 

 

Equation (2) explains that if the brightness value of the pixel in 

CDI is equal or greater than μDI + (T1+T2) * σDI, the pixel can be 

identified as the landslide sample, and if the brightness value is 

equal or less than μDI + T1 * σDI, the pixel can be identified as 

the non-landslide sample. Those in this interval are classified 

into uncertain areas. Parameter values of T1 and T2 were set in 

Table 1 by trial and error. 

                            

  
(a)                                               (b) 
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(c)                                               (d) 

 

Figure 3. (a) Change detection image of bitemporal NDVI. (b)  

Training sample mask of δNDVI. (c) Fourth component of PCA. 

(d) Training sample mask of PCA-4. 

 

As show in Figure 3(b) and 3(d), red, green and black represent 

landslides, non-landslides and uncertain areas, respectively. 

Then, MRF method with the training sample mask and the post-

event image is used to classify uncertain areas into landslide 

and non-landslide. 

 

3.4 Markov Random Field for Landslide Mapping 

First, landslide mapping is transformed into pixel labelling 

problem. MRF assigns a label 1 or 0 for every pixel in uncertain 

areas (1 for landslide and 0 for non-landslide), which forms a 

label set. And then an energy function for the label set is 

established using the joint probability distribution of MRF as 

the equation (3). Next the energy function is constructed as an 

undirected graph. Finally, the max-flow algorithm is used to 

segment the undirected graph to get the globally optimal 

minimum cut, which can achieve the optimal landslide mapping 

(Boykov, 2004a). 

 

 
     

 arg min





  



u P

L

E L E L E L

L E L

      (3) 

 

where  Eu(L) = the unary potential 

 Ep(L) = the pairwise potential 

 L = (l1, l2, …, ln), a label set and li represents the label 

of the ith pixel  

 λ = a coefficient reflecting the relative importance 

between the unary and pairwise potential 

               


L  = the label set correspond with the minimum of the 

energy function  E L  

 

3.4.1 The unary potential:  Eu(L) represents the level of 

similarity between the label set L and training samples. It is 

defined as the following equation (4) and (5): 

 

    
1
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where  C1 = the single-site clique 

 log(p(O|Ii)) = the posterior probability of pixels in 

uncertain areas belonging to the object O (landslide) 

log(p(B|Ii)) = the posterior probability of pixels in 

uncertain areas belonging to the background B (non-

landslide) 

Vi(li) = negative logarithmic of the posterior 

probability 

 

3.4.2 The pairwise potential: Ep(L) represents the level of 

similarity between adjacent pixels (4-neighborhood). It is 

defined as the following equation (6), (7) and (8): 

 

    
  2,

= ,


p ij i j

i j C

E L V l l                       (6) 
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where  C2 = the pair-site clique 

 (Ii-Ij)2 = the spectral differences of red, green and blue 

of visible bands between adjacent pixels 

 =   
1

2

2


i jI I , and represents the 

expectation operator on the whole image 

 

3.4.3 Energy minimization: The energy function is 

constructed as an undirected graph G = <V, E>. V and E 

represent the set of vertex and edge, respectively. In addition, 

the graph has two kinds of special vertex set, S and T, which 

represent landslide and non-landslide training samples, 

respectively. In this graph, the weight of edges connecting 

pixels in V with S and T is decided by the unary potential, and 

the weight of edges connecting neighbouring pixels in V is 

decided by the pairwise potential. A cut in the graph G refers to 

a set of edges, which cut them can cause the set V divided into 

two disjoint sets, VO for landslide and VB for non-landslide. If 

the sum of weights of edges reaches a minimum, it’s called the 

minimum cut. To achieve the optimal landslide mapping, the 

max-flow algorithm (Boykov, 2004a) is used to segment the 

undirected graph to get the globally optimal minimum cut. 

 

4. RESULTS AND ACCURACY ASSESSMENT 

By combining change detection based multi-threshold method 

with MRF, two landslide inventory mappings were obtained as 

shown in Figure 4. To evaluate the accuracy of the proposed 

method, these two mappings were compared with the manually 

digitized reference mapping (Fig. 1(c)). And three accuracy 

assessment indices: Completeness, Correctness and Quality are 

used as follows (Li, 2016a): 

 

  lm rCompleteness P P                           (9) 

 
 lm lCorrectness P P

                            (10) 

   lm l rumQuality P P P     (11) 
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(a)                                              (b) 

 

  
(c)                                              (d) 

 

Figure 4. Landslide mapping results of MRF. (a) Binary result 

of using δNDVI. (b)  Landslides in (a) overlaid on the post-event 

image. (c) Binary result of using PCA-4. (d) Landslides in (c) 

overlaid on the post-event image. 

 

where  Plm = the total pixel number of the mapped landslides 

that are consistent with the truths 

 Pr = the total pixel number of the truths 

                Pl = the total pixel number of the mapped landslides  

 Prum = the total pixel number of the truths are 

inconsistent with the mapped landslides 

 

 
 

Figure 5. The histogram of accuracy assessment for LIM in the 

study area 

 

It has been calculated that in the study area, using bitemporal 

NDVI (δNDVI) for CDI and MRF for mapping landslides, the 

completeness, correctness, and quality of LIM achieved 79.67%, 

97.12% and 76.07%, respectively. Using PCA-4 instead of 

δNDVI, the completeness of 95.93%, the correctness of 88.03%, 

and the quality of 76.08% were achieved. It shows clearly that 

in the study area, using δNDVI for CDI can achieve more correct 

mapping result but the omission error is more than PCA-4. And 

the PCA-4 would cause excessive landslide mapping. The 

quality of both methods is almost the same, which indicates the 

proposed new CDMRF can achieve mapping landslide 

inventory rapidly and accurately over large areas. 

 

5. CONCLUSION 

In this study, we integrated two image difference technologies 

into the CDMRF for automatic and accurate landslide inventory 

mapping from bitemporal 10 m Sentinel-2 multispectral images. 

First, a difference image based on bitemporal NDVI was 

generated and the fourth band image of principal component 

analysis (PCA-4) was generated using the pre- and post-event 

near-infrared (NIR) and red bands. Second, multi-threshold 

method based on generated change detection images (CDI) was 

used to generate training sample masks, which include 

landslides, non-landslides and uncertain pixels. Finally, using 

Markov random field (MRF) with training sample masks onto 

the post-event Sentinel-2 image achieved the optimal landslide 

inventory mapping (LIM). 

 

The proposed method was used to map landslides in an area 

about 16.5 km2 in Western China. δNDVI for CDI achieved 

completeness and correctness of 79.67% and 97.12% and PCA-

4 for CDI achieved completeness and correctness of 95.93% 

and 88.03%. The quality of these two methods achieved 76.07% 

and 76.08%, respectively. 

 

Experimental results verified the effectiveness of the proposed 

method: 1) it takes advantage of spectral characteristics of 

landslides; 2) it takes into account the spatial contextual 

information in post-event remote sensing image, which makes 

up for the deficiency of ignoring spatial characteristic of pixels 

in traditional pixel-based methods; 3) it has a high degree of 

automation due to little parameter tuning; and 4) it is a generic 

landslide inventory mapping method. This method has great 

potential to provide a technical support for future landslide 

inventory mapping over large areas in China. 
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