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ABSTRACT: 
 
The relationship between net primary productivity (NPP) and phenological changes is of great significance to the study of regional 
ecosystem processes. In this study, firstly, NPP was estimated with the remote sensing model based on the SPOT-VGT NDVI 
dataset (2000-2015), meteorological data and the vegetation map in Northeast China. Then, using NDVI time series data which was 
reconstructed by polynomial fitting, phenology was extracted with the dynamic threshold method. Finally, the relationship between 
NPP and phenology was analyzed. The results showed that NPP mainly increased in the cropland, grassland, forestland and 
shrubland; however, vegetation NPP decreased in the ecotone among cropland, grassland and forestland. Correlation analysis 
suggested that the relationships between NPP and phenological metrics (i.e., the start of the growing season (SOS), the end of the 
growing season (EOS), the length of the growing season (LOS)) were different due to geographical location. On the whole, there was 
a positive correlation between NPP and the LOS in the forestland, and negative in the cropland and grassland, indicating that 
extended LOS can promote the accumulation of forestland NPP. By analyzing the monthly NDVI data during the vigorous growth 
period, the increase of NPP in the grassland and cropland was mainly due to the better growth from June to August, and shortened 
LOS did not lead to reduce the NPP. Generally, the response of NPP to phenology in Northeast China were more complex, showing 
obvious difference of vegetation types and spatial variability, we need to consider topography, community structure and other factors 
in the further studies. 
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1. INTRODUCTION 

Net primary productivity refers to the amount of organic matter 
accumulated in unit time and area, which can characterize the 
quality of regional ecosystems and plays an important role in 
the study of global change and carbon balance (Badeck et al., 
2004; Nayak et al., 2010). Phenology is a periodic natural 
phenomenon in which life activities such as growth and 
reproduction of plants and animals are affected by the 
environment (Ruimy et al.,1994). With global warming, the 
phenology of vegetation has changed (Schwartz et al., 2006), it 
may lead to changes in vegetation productivity, community 
composition and structure, as well as water and heat & CO2 
exchange (Piao et al., 2008; Dragoni et al, 2011). Therefore, the 
research on the relationship between NPP and vegetation 
phenology is of great significance to the analysis of the impact 
of phenological changes on the ecosystem processes. 
 
Up to now, some studies have been conducted to explore the 
relationship between ecological processes and phenology. 
Based on the MODIS NDVI data (2002-2012) and 
meteorological data, Yang et al. (2015) found that the LOS 
extended 0.3 d/a and the NPP increased 1.494gCꞏm−2ꞏa-1 
significantly in the Tibet Plateau. Using 187 site-years of flux 
data, Wu et al. (2012) analyzed spatial and interannual 
relationships between phenological metrics and annual net 
ecosystem production (NEP) of three plant functional types in 
North America, the result suggested that longer LOS can 

contribute to the increase in annual carbon sequestration and an 
extra day of LOS would enhance NEP by 3.5gCꞏm−2ꞏa−1, 
6.8gCꞏm−2ꞏa−1, and 18.4gCꞏm−2ꞏa−1 for evergreen forests, 
deciduous forests and non-forest ecosystems respectively. In the 
boreal and arctic regions, Park et al. (2016) evaluated the effect 
of phenological changes on gross primary productivity (GPP) 
based on GIMMS NDVI3g datasets (1982-2014) and pointed 
out that 42% of vegetation got a 20.9% gain in productivity due 
to the greening trend. Buermann et al. (2013) used GIMMS 
NDVIg datasets (1982-2008), climate data and microwave data 
to explore the effect of earlier springs on the ecosystem 
productivity in the North American boreal forests, the result 
indicated that ecosystem productivity gained from earlier 
springs was effectively cancelled out by corresponding losses 
during the late growing season because of summer droughts. 
Using FLUXNET data, Falge et al. (2002) observed seasonal 
variations of GPP in different vegetation functional areas, and 
found that with the LOS extended by one day, the NEP 
decreased 2.46gCꞏm−2ꞏa-1 in the grassland. Dunn et al. (2007) 
investigated the relationship between phenological changes and 
carbon budget through observational records from 1994 to 2004 
in a boreal black spruce forest, the result showed that there was 
no correlation between longer growing seasons and net uptake. 
In summary, the relationship between ecosystem productivity 
and vegetation phenology was complex, including positive 
correlation, negative correlation and no correlation. The 
response of vegetation productivity to phenological changes 
may be different due to various factors, such as data sources, 
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vegetation types, heat distribution, soil moisture, community 
structure, and analytical methods. 
 
With the obvious spatial heterogeneity of environmental factors 
(e.g., soil, topography, water & heat ), the Northeast China is 
rich in vegetation types and sensitive to global climate change 
(Leng et al., 2007). In addition, a large number of forest 
resources are distributed in the Greater Khingan Mountains, 
Lesser Khingan Mountains and Changbai Mountains. At present, 
researches in Northeast China mainly focus on the temporal and 
spatial pattern of vegetation NPP (Mao et al., 2012), phenology 
monitoring (Yu et al., 2006) and variation simulation (Guo et al., 
2010), but still lack the exploration on the relationship between 
vegetation NPP and phenological changes. Therefore, in this 
study, based on SPOT-VGT NDVI data, meteorological data 
and the vegetation map, we used the remote sensing model (Zhu 
et al., 2007) and dynamic threshold method to calculate the 
NPP value and phenological metrics in Northeast China from 
2000 to 2015, respectively. And the response mechanism of 
NPP to phenological changes was analyzed to provide a 
reference for exploring the ecological process changes in 
Northeast China. 
 

2. DATA AND METHODS 

2.1 Data 

In this study, the SPOT-VGT NDVI dataset (2000-2015) was 
provided by Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (RESDC) 
(http://www.resdc.cn). The dataset was aggregated into monthly 
time steps by using Maximum Value Composites (MVC) 
method. The spatial resolution is 1km × 1km. Meteorological 
data (2000-2015) at 107 sites in Northeast China, derived from 
the China Meteorological Data Sharing Service System 
(http://cdc.cma.gov.cn/), including mean monthly temperature, 
total monthly precipitation and total monthly solar radiation. In 
order to ensure the consistency of the meteorological data and 
remote sensing dataset in spatial scale, the interpolation method 
was used to convert the meteorological data into raster format at 
1km × 1km spatial resolution. In this study, all data used Albers 
Conical Equal Area Projection based on WGS-84. The original 
vegetation map (i.e., 1:1,000,000 scale vegetation distribution 
map of China) was compiled by the Editorial Committee for 
Vegetation Map of China (2001). According to the actual 
situation and research needs in Northeast China, vegetation 
types in the map were re-recorded and combined. Spatial 
distribution of vegetation types was shown in Fig. 1. 

 
2.2 CASA Model 

In this study, an improved CASA model based remote sensing 
(Zhu et al.,2007; Potter et al., 1993) was used to evaluate the 
vegetation NPP, which fully considered the plant growth 
characteristics and abiotic environmental factors (e.g., water, 
temperature, and light intensity) that can regulate the plant 
photosynthesis. In this CASA model, the NPP was calculated 
from absorbed photosynthetically active radiation (APAR) 
(MJꞏm-2) and the actual light use efficiency (ε) (gCꞏMJ-1) 
(equation (1)). 
          

 ( , ) ( , ) ( )NPP x t APAR x t ε x,t ×                     (1) 
 
where x is the location of a grid cell, and t is the period when 
NPP is cumulated, such as a month (Zhu et al., 2006). 
 

2.3 Extraction of Phenological Metrics 

Using NDVI time series data (2000-2015) which was 
reconstructed by polynomial fitting, vegetation phenology was 
extracted with the dynamic threshold method. Here, we selected 
three phenological metrics to investigate vegetation phenology 
in Northeast China, namely, SOS, EOS and LOS. 
 
2.3.1 Polynomial Fitting: Because of the effects of cloud, 
atmosphere, sensor and other factors, the original NDVI time 
series data may contain some singular values. Polynomial 
fitting method (Piao et al., 2006), based on the principle of least 
square method, was used to reconstruct the yearly NDVI time 
series (equation (2)) and can effectively reduce noise. 
  

 2 3
0 1 2 3

n
nNDVI a + a x+ a x + a x + + a x ൉൉൉	     (2) 

 
where x is the Julian days, and n is the degree of a polynomial 
function (n=6). 
 
2.3.2 Dynamic Threshold Method: The method is simple 
and easy, and it is one of the common methods in extraction of 
phenological metrics based on remote sensing (White et al., 
1997). The NDVI ratio was given by equation (3) 
  

 min
ratio

max min

NDVI NDVI
NDVI

NDVI NDVI





                    (3) 

 
where NDVImax is the annual maximum NDVI, and NDVImin is 
the annual minimum NDVI. After several experiments, we 
found that it was steady and reliable to use ratio of 0.25 and 
ratio of 0.5 as the threshold to calculate the SOS and EOS, 
respectively. 
 

 
Figure 1. Spatial distribution of vegetation types in Northeast 

China 
 

3. RESULTS AND ANALYSES 

3.1 The Mean Spatial Distribution and Trends of NPP 

The spatial distribution of mean NPP in Northeast China from 
2000 to 2015 was consistent with vegetation types, as shown in 
Fig. 2a. The higher NPP values, ranging from 500 to 
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800gCꞏm−2ꞏa−1, were mainly distributed in humid region of 
middle temperate zone. The area was abundant in water and 
heat resources and was suitable for vegetation growth. The 
main vegetation type was deciduous broad-leaf forest. The 
medium NPP values ranged from 300 to 500gCꞏm−2ꞏa−1. The 
main vegetation types were needle-leaf forest, needle & broad-
leaf mixed forest, marsh and cropland. Due to a short growth 
period and small leaves, the productivity of needle-leaf forest 
was lower than that of deciduous broad-leaf forest in the same 
study area (Mao et al., 2014). The lower values area mostly 
existed in semi-arid and semi-humid regions that was not 
conducive to vegetation growth with less precipitation. The 
major types of vegetation were grassland and shrubland, less 
are types of cropland, and the mean NPP ranged from 100 to 
300gCꞏm−2ꞏa−1 in this area. The values of NPP under 
100gCꞏm−2ꞏa−1 was mainly distributed in ecological fragile 
areas, such as bare land and desert. 
 
The spatial distribution of trends of NPP in Northeast China 
from 2000 to 2015 was shown in Fig. 2b. Approximately 69% 
of the pixels showed an increasing trend (0~100gCꞏm−2ꞏa−1), 
and the main vegetation types were grassland, cropland and 

forestland (i.e., needle-leaf forest, deciduous broad-leaf forest 
and needle & broad-leaf mixed forest). It was noticeable that 
some forestland of the Changbai Mountains and some cropland 
of the north of the Northeast Plain had obvious increasing trend 
(more than 100gCꞏm−2ꞏa−1). The above changes may be affected 
by two aspects: on the one hand, in order to curb the 
deterioration of the ecological environment, the natural forest 
protection project had been implemented throughout the 
country since the late 1990s, which effectively promoted the 
protection, cultivation, and development of forest resources, 
and made NPP increase in the forestland; and on the other hand, 
with the increase of people's demand for agricultural products 
and the improvement of agricultural operation and management 
technology, agriculture had been developing rapidly and the 
NPP of cropland showed an increasing trend in the Northeast 
Plain. On the contrary, approximately 31% of the pixels, which 
were distributed in the shrubland and the ecotone among 
cropland, grassland and forestland, showed a decreasing trend 
(0~100gCꞏm−2ꞏa−1). This may be resulted from land degradation 
caused by overgrazing and over-cultivation, and the 
transformation of land use type. 

 

   
(a) Mean NPP                                                                (b) Trend of the NPP 

Figure 2. Spatial distribution of mean NPP and change trends in Northeast China from 2000 to 2015 
 
3.2 The Mean Spatial Distribution and Trends of 
Vegetation Phenology 

The spatial distribution of the average values of phenological 
metrics from 2000 to 2015 presented a high spatial 
heterogeneity in Northeast China (Fig. 3). The attribute of the 
grid cell is the day of Year (DOY), which refers to the number 
of days accumulated from January 1. The SOS mainly occurred 
between DOY 100 and 160 (i.e., from mid April to early June) 
in Northeast China (Fig. 3a). There were differences in the SOS 
for various vegetation types. The earliest SOS, varying from 
DOY 100 to 110 (i.e., mid April), was mainly located in the 
most of deciduous broad-leaf forest. The SOS of needle-leaf 
forest and needle & broad-leaf mixed forest mainly occurred 
between DOY 110 and 120 (i.e., late April). The late SOS, 
ranging from DOY 120 to 160, was mainly located in the 
grassland and most of cropland. This area was main grain 
production and grazing areas in Northeast China, so the SOS 

was greatly influenced by human activities. From the Fig. 3b, 
we found that the SOS of forestland in the Greater Khingan 
Mountains and the northern segment of the Changbai 
Mountains was in advance (0~10 days) from 2000 to 2015; 
whereas in the Lesser Khingan Mountains and the southern 
segment of the Changbai Mountains was delayed (0~10 days). 
The SOS of cropland was mainly delayed by 0~20 days, which 
may be related to the start time of cultivation. The SOS of most 
grassland was mainly delayed (0~30 days), and a small part in 
the Northeast Plain and the east of Hulunbuir Plateau was in 
advance (0~20 days). 
 
The mean EOS (during 2000-2015) mainly occurred between 
DOY 260 and 300 in Northeast China (Fig. 3c). The EOS of 
most cropland mainly occurred between DOY 270 and 280, that 
was, early October. It was the time of crops harvesting in the 
region. The EOS of some forestland in the northern segment of 
the Greater Khingan Mountains was relatively early and 
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occurred between DOY 260 and 270, which may be related to 
the low temperature and the great temperature difference in 
autumn. On the contrary, the EOS of some deciduous broad-leaf 
forest in the southern segment of the Lesser Khingan Mountains 
and the Changbai Mountains was relatively late and occurred 
between DOY 280 and 300, which may be related to the humid 
climate and the small temperature difference in autumn. The 
EOS of grassland was dispersed, ranging from DOY 260 to 290. 
The trends of the EOS in Northeast China between 2000 and 
2015 was shown in Fig. 3d. The EOS of cropland and grassland 
was in advance (0~20 days); and the EOS of forestland was 
delayed (0~20 days), which may be related to the climate 
warming in Northeast China in recent years (Zhao et al.,2016). 
 
From 2000 to 2015, the LOS of vegetation had a long span in 
Northeast China, mainly occurred between 100 and 195 days 
(Fig. 3e). The LOS of grassland was short, mainly occurred 
between 100 and 150 days. The LOS of part of forestland 
mainly occurred between 150 and 170 days, which was located 
in the Greater Khingan Mountains and the northern segment of 

the Lesser Khingan Mountains; the LOS of other part of 
forestland was relatively long and mainly occurred between 170 
and 195 days, which was located in the Changbai Mountains, 
the Wanda Mountains and the southern segment of the Lesser 
Khingan Mountains. From the Fig. 3f, we found that the LOS of 
grassland and cropland mainly showed shortened trend (0~30 
days) and most of forestland showed lengthened trend (0~20 
days). 
 
For the phenology of various vegetation types in Northeast 
China from 2000 to 2015, we can conclude that: 1) in the 
cropland, the SOS occurred relatively late, the EOS was at an 
intermediate level, the LOS was shorter and showed a 
shortening trend; 2) in the grassland, the EOS occurred 
relatively early, the SOS and LOS were at an intermediate level, 
and the LOS also showed a shortening trend; 3) in the 
forestland, the SOS occurred relatively early, the EOS occurred 
relatively late, and the LOS was longer and showed a 
lengthening trend.

 

 
(a) Mean SOS                                          (b) Trend of the SOS                                        (c) Mean EOS 

 
(d) Trend of the EOS                                         (e) Mean LOS                                         (f) Trend of the LOS 

Figure 2. Spatial distribution of phenological metrics and change trends in Northeast China from 2000 to 2015 
 

3.3 Response of NPP to Phenological Variation 

The results of the correlation analysis (P<0.05) between NPP 
and phenological metrics (i.e., SOS, EOS and LOS) in 
Northeast China from 2000 to 2015 showed that the response of 
vegetation NPP to phenological variation existed differences 
due to vegetation types and geographical location. On the whole, 
NPP of needle-leaf forest and SOS was negative correlation, the 

coefficient was -0.75~-0.3. The correlation between NPP of 
needle-leaf forest and the EOS and the LOS varied with the 
geographical location. In the northern segment of the Greater 
Khingan Mountains, the NPP of needle-leaf forest was 
negatively correlated with the EOS and was not related to the 
LOS, the coefficient was -0.65~-0.3; in the middle segment of 
the Greater Khingan Mountains, NPP of needle-leaf forest was 
positively correlated with the EOS and LOS, the correlation 
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coefficients were 0.3~0.65 and 0.3~0.7, respectively; in the 
southern segment of the Greater Khingan Mountains, NPP of 
needle-leaf forest was negatively correlated with the EOS and 
positively correlated with the LOS, the correlation coefficients 
were -0.75~-0.3 and 0.3~0.65, respectively. The NPP of 
deciduous broad-leaf forest was negatively correlated with the 
SOS and was positively correlated with the LOS, the correlation 
coefficients were -0.75~-0.3 and 0.35~0.7, respectively. The 
correlation between NPP of deciduous broad-leaf forest and the 
EOS varied with the geographical location. In the Changbai 
Mountains and the southern segment of the Greater Khingan 
Mountains, NPP of deciduous broad-leaf forest and EOS was 
negative correlation, the coefficient was -0.6~-0.3; in the 
Wanda Mountains, the northern segment of the Greater 
Khingan Mountains and the southern segment of the Lesser 
Khingan Mountains, NPP of deciduous broad-leaf forest and 
EOS was positive correlation, the coefficient was 0.3~0.6. In 
the shrubland, the NPP was negatively correlated with the SOS 
and positively correlated with the LOS, and was not related to 
the EOS, the correlation coefficients were -0.75~-0.3 and 
0.3~0.65, respectively. The NPP of marsh was negatively 
correlated with the SOS and positively correlated with the LOS, 
the correlation coefficients were -0.75~-0.35 and 0.3~0.6, 
respectively. In the northern segment of the Greater Khingan 
Mountains, the NPP of marsh and EOS was positive correlation, 
the coefficient was 0.3~0.6; in the southern segment of the 
Greater Khingan Mountains, whereas the NPP of marsh and 
EOS was negative correlation, the coefficient was -0.7~-0.3. On 
the whole, the NPP of grassland was positively correlated with 
the SOS and negatively correlated with the EOS and the LOS, 
the correlation coefficients were 0.3~0.75, -0.8~-0.35 and -0.8 
~-0.35, respectively. In addition, NPP of grassland which was 
distributed in the ecotone of grassland and forestland and the 
ecotone of grassland and cropland was negatively correlated 
with the SOS and positively correlated with the LOS, the 
correlation coefficients were -0.65~-0.3 and 0.3~0.6. The NPP 
of most cropland was negatively correlated with the SOS, the 
EOS, and the LOS, respectively, the correlation coefficients 
were -0.7~-0.3, -0.65~-0.3, and -0.65~-0.3. Specially, NPP of 
cropland, which was distributed in the Changbai Mountains and 
ecotone of cropland and forestland, was positively correlated 
with the LOS, the coefficient was 0.3~0.65. It can be concluded 
that the response of vegetation NPP to phenology in Northeast 
China from 2000 to 2015 was more complex, and existed 
differences due to vegetation types and geographical location. 
 
According to the above statistical analysis results, the Fig. 2b 
and the Fig. 3f, we found that NPP of vegetation (mainly 
cropland and grassland) increased with the decreasing LOS in 
Northeast China from 2000 to 2015. In order to explain this 
phenomenon, we further analyzed trends of the monthly NDVI  
data in vigorous growth period (i.e., from June to September) in 
Northeast China. During 2000-2015, it was found that the 
monthly NDVI values of cropland and grassland showed an 
increasing trend and the overall increasing scope was between 0 
and 0.2 (more than 0.2 in some areas) in June, July and August; 
in September, showed a decreasing trend and the overall 
decreasing scope was between 0 and 0.15. This indicated that 
the increase of NPP in cropland and grassland was mainly due 
to the good growth from June to August, so the shortened LOS 
did not lead to the decrease of NPP. In the grassland and 
cropland, the increasing trend of NDVI values may be due to 
the development of agricultural technology in recent years and 
the restrictions on grazing. 
 

4. CONCLUSIONS 

In this study, firstly, NPP was estimated with the remote 
sensing model based on the SPOT-VGT NDVI dataset (2000-
2015), meteorological data and the vegetation map in Northeast 
China. Then, using NDVI time series data which was 
reconstructed by polynomial fitting, phenology was extracted 
with the dynamic threshold method. Finally, the relationship 
between NPP and phenology was analyzed. The results showed 
that the mean NPP ranged from 100 to 800gCꞏm−2ꞏa−1 in 
Northeast China during 2000 to 2015. The NPP of deciduous 
broad-leaf forest was the highest, and the mean NPP was 
between 500 and 800gCꞏm−2ꞏa−1; the NPP of needle-leaf forest, 
needle & broad-leaf mixed forest, marsh and most cropland was 
relatively high, and the mean NPP was between 300 and 
500gCꞏm−2ꞏa−1; the NPP of grassland and shrubland was 
relatively low, and the mean NPP was between 100 and 
300gCꞏm−2ꞏa−1. In the grassland, cropland, and forestland, the 
NPP showed an increasing trend (0~100gCꞏm−2ꞏa−1); in the 
shrubland and the ecotone among cropland, grassland and 
forestland, the NPP showed a decreasing trend 
(0~100gCꞏm−2ꞏa−1). For the phenology of various vegetation 
types, the SOS of cropland occurred relatively late, the EOS 
was at an intermediate level, the LOS was shorter and showed a 
shortening trend; the EOS of grassland occurred relatively early, 
the SOS and LOS were at an intermediate level, and the LOS 
also showed a shortening trend; the SOS of forestland occurred 
relatively early, the EOS occurred relatively late, and the LOS 
was longer and showed a lengthening trend.  
 
Contrary to our expectation, it was found that the NPP was 
negatively correlated with the LOS in the cropland and 
grassland. Here, we further analyzed trends of the monthly 
NDVI data in vigorous growth period, and found that the 
monthly NDVI values of cropland and grassland showed an 
increasing trend in June, July and August. This indicated that 
the increase of NPP in the cropland and grassland was mainly 
due to the good growth from June to August, so the shortened 
LOS did not lead to the decrease of NPP.  
 
The results showed that NPP of forestland increased with the 
extended LOS from 2000 to 2015 in Northeast China, that was, 
the prolongation of the LOS effectively promoted the 
accumulation of NPP in forestland. This was basically 
consistent with findings of the response of forestland NPP to 
phenology by Dragoni et al. (2011) and Yang et al. (2015). On 
the contrary, the NPP of cropland and grassland increased with 
the shortened LOS in Northeast China from 2000 to 2015. It 
indicated that the response of NPP to phenology in the cropland 
and grassland was complicated and may be related to the human 
intervention on agricultural development. In summary, the 
response of vegetation NPP to phenological changes was 
complex in Northeast China. In the further studies, the impact 
of environmental factors (e.g., hydrology, topography, 
temperature, precipitation, and solar radiation) and natural 
disasters (e.g., forest fire, flood, and drought) on phenology and 
vegetation NPP should be fully considered, and the response of 
vegetation NPP to phenological changes will be deeply 
analyzed from its mechanism. That can provide the basis for 
studying the ecological processes, guiding and serving the 
production of agriculture forest and husbandry, and promoting 
the sustainable development of ecological economy in 
Northeast China. 
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