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ABSTRACT:

The aim of this work is to exploit the large-scale analysis capabilities of the innovative Google Earth Engine platform in order to
investigate the temporal variations of the Urban Heat Island phenomenon as a whole. A intuitive methodology implementing a large-
scale correlation analysis between the Land Surface Temperature and Land Cover alterations was thus developed.
The results obtained for the Phoenix MA are promising and show how the urbanization heavily affects the magnitude of the UHI effects
with significant increases in LST. The proposed methodology is therefore able to efficiently monitor the UHI phenomenon.

1. INTRODUCTION

Google Earth Engine (GEE) is the computing platform recently
released by Google ”for petabyte-scale scientific analysis and vi-
sualization of geospatial datasets”. Using a dedicated High Per-
formance Computing (HPC) infrastructure, it enables researchers
to easily and quickly access more than thirty years of free and
public data archives, including historical imagery and scientific
datasets, for global and large scale remote sensing applications.
In this way, many of the limitations related to data downloading,
storage and processing are effortlessly overcome (Gorelick et al.,
2017), (Nascetti et al., 2017).

In particular, the aim of this work is to exploit the large-scale
analysis capabilities of such platform in order to develop a new
methodology able to investigate the temporal variations of the
Urban Heat Island (UHI) phenomenon as a whole.

The term UHI refers to the mesoscale phenomenon associated
with higher atmospheric and surface temperatures occurring in
urban environments than in the surrounding rural areas due to ur-
banization (Voogt and Oke, 2003). The effect is most relevant
at night when the urban surfaces release the energy stored dur-
ing the daytime with less efficiency than the nearby rural areas.
Therefore, it is easy to understand how the Land Cover (LC) al-
terations caused by human activities can have an heavy impact on
the phenomenon.

For this reason, the work was focused on different USA Metropoli-
tan Areas (MAs) which experienced a significant urban expan-
sion in the last decades. In these cities, soils that were once per-
meable and wet were transformed in waterproof and dry surfaces,
where residential suburbs have replaced forests and/or agricul-
tural hinterlands. Hence, such MAs represent a valuable test site
in which to prove the effectiveness of the developed methodol-
ogy.

∗Corresponding author.

The work is thus organized as follows. In Section 2 the method-
ology is illustrated with great details. In Section 3, the first re-
sults obtained for the Phoenix MA (Arizona) are presented and
discussed. Indeed, from 1983 to 2010 this city underwent a sig-
nificant expansion, changing from a mostly agricultural region to
a metropolis predominantly characterized by residential suburbs
(Fernando et al., 2001), (Doran et al., 2003), (Lee et al., 2003),
(Brazel et al., 2007), (Di Sabatino et al., 2009), (Lee et al., 2012),
(Wang et al., 2016). Finally, in Section 4 conclusions are drawn
and future prospects are outlined.

2. DATA AND METHODS

The developed methodology implements a large-scale correlation
analysis between the Land Surface Temperature (LST) and LC al-
terations through the joint use of GEE and Climate Engine (CE), a
free web application powered by GEE, enabling users to process,
visualize, and download various global and regional climate and
remote sensing datasets and products in real-time (Huntington et
al., 2017).

Figure 1: Selected ROI for the Phoenix MA.
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Specifically:

• the annual median of the LST was computed through CE
(Figure 1) from the Landsat Top of Atmosphere Reflectance
Data for every year of the temporal period comprised be-
tween the 1992 and the 2011 over the Region Of Interest
(ROI)1 corresponding to the considered MA;

• the LC data were directly retrieved through GEE from the
USGS National Land Cover Database (NLCD, Figure 5) on
the same ROI for the 1992 and 2011 years, respectively .

In this way, 20 thermal images (each one relative to a single year)
were obtained in which the value stored in every pixel is the me-
dian of the LST computed over all the Landsat images available
in CE for the considered year2. Figure 2 reports two examples of
such images, respectively for the years 1992 and 2011, where it
is possible to notice a general increase of the LST.

(a)

(b)

Figure 2: LST 1992 (a) and 2011 (b) obtained through CE for
the considered ROI.

Then, for every pixel of the ROI, the parameters of a simple linear
model (Eq. 1) able to describe the temporal LST variation were
robustly estimated.

LST = m ∗ time+ c (1)

Thus, the two maps illustrated in Figure 3 were computed: they
show the same increasing LST trend (m > 0) observed in Figure
2, characterized by variable rates within the ROI. Nevertheless,

1The ROI was selected in order to capture surface variability and to
consider surface portions remained unchanged and purely rural.

2Preliminarily, it was verified that each year had a good seasonal dis-
tribution of images, in order to avoid considering more summer or winter
images that could compromise a good estimate.

(a)

(b)

Figure 3: Map of the constant (a) and slope (b) parameters of the
LST linear model Eq. 1 on the investigated ROI.

there is also a very small number of pixels, statistically not sig-
nificant, presenting a decreasing or constant LST trend (Figure 4,
m ≤ 0). Hence, it is important to investigate the possible relation
of the observed LST trends, and their relative growth rates, with
the corresponding LC alterations.

As previously mentioned, the LC alterations were retrieved from
the NLCD which adopts a LC classification scheme based on sev-
eral functional classes.

In particular, the NLCD (Fry et al., 2009), (Homer et al., 2015) is
a Landsat-based LC database covering four epochs (1992, 2001,
2006 and 2011). It adopts a LC classification system based on
several functional classes but, while NLCD2001, NLCD2006,
and NLCD2011 products share the same classification scheme
(Figure 6(b)), the one adopted by NLCD1992 is slightly different
(Figure 6(a)). This can cause a not complete correspondence be-
tween the LC classes, as it happens for the classes Commercial
Industrial/Transportation of the NLCD1992 and Medium Inten-
sity Residential of the NLCD2011 (Table 1), for which it does not
exist an equivalent class in the other classification scheme. For
this reason, only the classes present in both the 1992 and 2011
products and more representative of the Phoenix MA territorial
features were considered:

• Low Intensity Residential: includes areas characterized by a
mixture of constructed materials (30%-80%) and vegetation
(70%-20%). These areas most commonly include single-
family housing units. Population density is lower than in
high intensity residential areas.

• High Intensity Residential: includes highly developed ar-
eas where people reside in high numbers such as apartment
complexes and row houses. Vegetation accounts for less
than 20% of the cover; the remaining part corresponds to
constructed materials.
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Figure 4: Trend of the least squares for different pixels: positive trend, constant trend, negative trend.

(a) 1992 (b) 2011

Figure 5: NLCD for the Phoenix MA.

(a) 1992 (b) 2011

Figure 6: NLCD legends.

• Shrubland: areas dominated by shrubs; shrub canopy ac-
counts for 25%-100% of the cover. Considering that the
city of Phoenix is located in the north-eastern reaches of the
Sonoran Desert, this class corresponds to the (scarce) desert
vegetation, i.e. to the desert itself.

• Row Crops: rural areas used for the production of crops,
such as corn, soybeans, vegetables, tobacco, and cotton.

Therefore, the LST and LC data thus obtained were spatially
analysed to cluster the ROI pixels with similar LC alterations, in
order to investigate the correlation with their LST growth rates. In
this way it is indeed possible to highlight the UHI effect occurred
in the most significant urban expansion areas. Specifically, fol-
lowing the adopted linear temperature growth model (Eq. 1), two

matrices were computed, one for the constants (c) and one for the
slopes (m). Every cell ij of the two matrices aggregates all the
ROI pixels presenting the specific LC i in the initial year (1992)
and the specific LC j in the final year (2011). Moreover, such
ij cell contains the mean of the two model parameters computed
considering the values of c (constant matrix) or slope (slope ma-
trix) of all the ROI pixels subjected to the LC transformation from
i to j. A schematic representation of these matrices is shown in
Figure 7.

3. RESULTS

For the city of Phoenix, the developed methodology was applied
to a ROI of about 13340 km2, corresponding to the MA itself plus
its rural and desert surroundings. To speed up the computation,
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1992 2011
LC classes LC code LC classes LC code

Low Intensity Residential 21 Developed, Low Intensity 22
High Intensity Residential 22 Developed, High Intensity 24

– – Medium Intensity Residential 23
Commercial Industrial/Transportation 23 – –

Shrubland 51 Shrub/Scrub 52
Row Crops 82 Cultivated Crops 82

Table 1: NLCD codes variation over the years 1992-2011.

Figure 7: Matrix representation of the LC changes: the LC tran-
sition from the class Row Crops to the class High Intensity Resi-
dential (from i = 51 to j = 24) is indicated with the red arrow.

the results were generated considering a spatial resolution of 300
m, ten times the original Landsat resolution (30 m).

Figure 9 and Figure 10 illustrate separately the spatial distribution
of the four considered LC classes, in 1992 and 2011 respectively:
it is evident that the (desert) Shrubland class is predominant, be-
cause of the desert nature of Phoenix. Conversely, the High Inten-
sity Residential class included a limited number of pixels in 1992
which however increased in 2011, as also those belonging to the
Low Intensity Residential class. Such urban expansion was preva-
lently obtained at expenses of the rural areas which decreased
significantly in the investigated temporal period.

The obtained results are shown in Figure 8, where the Slope Ma-
trix and the Constant Matrix are reported. On their main diago-
nals, there are the ROI pixels whose original LC remained unal-
tered: they form, as expected, the more numerous group. Then
there are the pixels which underwent the LC transitions from the
classes Row Crops or Shrublands to the classes Low Intensity
Residential or High Intensity Residential, changing their nature
from purely rural to urban. The abandonment of the rural areas
is instead reflected in the LC transformation from the class Row
Crops to the class (desert) Shrublands, which involved a consis-
tent number of pixels. Lastly, there are the ”urban-rural” transi-
tions, i.e. from Low Intensity Residential or High Intensity Resi-
dential to Shrublands or Row Crops, but they are not statistically
significant since they involve a very limited number of pixels.

Specifically, analysing the Constant matrix (Figure 8(a)), it is ev-
ident how in 1992 the higher LST values are located in the first
three rows, which correspond to the areas already urbanized or
belonging to the desert. The lowest initial LST values is instead
in correspondence of the LC class Row Crops, i.e. in the culti-
vated areas, systematically irrigated and thus colder.

For what regards the values contained in the Slope matrix, they
highlight the presence of a general LST increasing trend, inde-
pendent of the considered LC variation (Figure 8(b)). At the

(a) Constant matrix

(b) Slope matrix

Figure 8: Matrices.

same time, though, it can be observed how the highest increasing
rate (0.36oC/year) corresponds to the LC transition from the class
Row Crops to the class High Intensity Residential: the substitu-
tion of cultivated areas with dry and impervious surfaces (roofs,
asphalt..) leads to less shade and moisture able to keep such areas
cool. The same phenomenon occurs considering the transforma-
tion from the class Row Crops to the class Low Intensity Resi-
dential (0.34oC/year), but it involves more pixels. Furthermore,
a lower LST increasing rate (0.25oC/year) can be observed in
the LC change from (desert) Shrublands to Row Crops, while an
high increasing rate (0.35oC/year) can be noticed in the opposite
transformation. The first case corresponds to those ROI pixels
that become cultivated and thus irrigated, whereas the latter is re-
lated to the abandonment of the rural areas, which thus were no
longer irrigated. Finally, as it could be expected, the transforma-
tions starting from the (desert) Shrublands LC class (third row)
are characterized by a low increasing rate of the LST.
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(a) LC code 21: Low Intensity Residential (b) LC code 22: High Intensity Residential

(c) LC code 51: Shrublands (d) LC code 82: Row Crops

Figure 9: 1992 spatial distribution of LC classes within the ROI.

(a) Code 22 Low Intensity Residential (b) LC code 24: High Intensity Residential

(c) LC code 52: Shrublands (d) LC code 82: Row Crops

Figure 10: 2011 spatial distribution of LC classes within the ROI.
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In conclusion, the results achieved in this work are pretty consis-
tent, in terms of LST rates, with those obtained in (Wang et al.,
2016), where a similar spatio-temporal approach was developed
for modelling the UHI in the Phoenix MA.

4. CONCLUSIONS

In this work, an intuitive methodology was developed to investi-
gate the temporal variations of the UHI effects as a whole, based
on the large-scale analysis capabilities of GEE.

Specifically, the promising results regarding the Phoenix MA were
presented: they clearly show how the urbanization heavily influ-
ences the UHI magnitude with significant increases in LST. The
proposed methodology is therefore able to efficiently monitor the
UHI phenomenon and in an increasingly precise and fast way.

Nevertheless, it is however necessary to validate such method-
ology on other MAs, characterized by different weather condi-
tions and not located in desert regions. Moreover, it could be
also worth to analyse the LC data in an aggregate way, in order
to avoid losing those LC classes not completely equivalent in the
two considered classification schemes.
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