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ABSTRACT: 

 

In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic 

detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the 

edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the 

vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information 

by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving 

vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately 

identify lane semantics from video images. 
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1. INTRODUCTION 

High-precision lane-level road maps provides information such 

as lane number, location, geometry and connectivity semantic, 

and its acquisition of low cost is a focus and difficulty in the 

field of autonomous driving (Hillel et al, 2014). There are 

several existing methods for obtaining lane-level road 

information: such as using high resolution images to extract the 

centerline markings and the width of lanes (Ye et al, 2006; Cao 

et al, 2017; Yu et al, 2013; Lisini 2006); using 

airborne/terrestrial Lidar data to extract the edge, road markings 

and geographic position of lanes(Fang et al, 2013; Anttoni et al, 

2008; Hui et al, 2016); using GPS trajectories to extract the 

number, location, and change detection of lanes(Chen et al, 

2010; Tang et al, 2016; Yang et al, 2017). The above lane-level 

road data acquisition methods have the disadvantages of high 

cost, slow update, lack of semantic information, so it is urgent 

to develop a method with low cost, quick collection, and 

complete road information. 

 

 

With the rapid development of sensors and Internet of Things 

technologies, more and more vehicle users have installed 

onboard cameras. These videos produced huge amounts of 

video data, containing rich road markings and lane semantic 

information such as speed limit signs, lane direction, and 

turning information (Yeh et al, 2015). Therefore, onboard 

camera videos data provides a rich data source for lane-level 

road information extraction with fast acquisition, low cost, and 

complete semantic information, which provides important 

technical support for vehicle navigation, driving assistance 

system, and autonomous driving. The onboard camera videos 

are mainly used for lane detection in driving assistance system 

in the existing research (Aly, 2008; Paula et al, 2013; Chen et al, 

2011). There is less research on lane semantic recognition. This 

paper proposes a method of extracting lane position and 

semantic information by using onboard camera videos. 

 

2. TYPE OF LANE MARKINGS 

There are many types of lanes on the road surface, and different 

lane markings represent different traffic regulations. According 

to the urban road planning and construction standards, the types 

of lane markings are divided into the following twelve types 

(Figure 1): solid white lines, dashed white lines, double solid 

white lines, solid-dashed white lines, dashed-solid white lines, 

double dashed white lines, solid yellow lines, dashed yellow 

lines, double solid yellow lines, solid-dashed yellow lines, 

dashed-solid yellow lines, double dashed yellow lines. 

 

Figure 1. Types of lane markings: (a)solid white(b)dashed 

white(c)double solid white(d)solid-dashed white(e)dashed-solid 

white(f)double dashed white(g)solid yellow(h)dashed 

yellow(i)double solid yellow(j)solid-dashed yellow(k)dashed-

solid yellow(l)double dashed yellow 
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In general, white lines always separates traffic in the same 

direction while yellow lines separates the inverse. Single dashed 

lines mean passing or lane changing is allowed, single solid 

white lines mean lane changing is discouraged but not 

prohibited, and double solid white lines mean it is prohibited. 

On two-lane roads, a single dashed centerline means that 

passing is allowed in either direction, a double solid centerline 

means passing is prohibited in both directions, and the 

combination of a solid line with a dashed line means that 

passing is allowed only from the side with the broken line and 

prohibited from the side with the solid line. 

 

3. SEMANTIC INFORMATION EXTRACTION OF 

LANES 

3.1 Lane Markings Detection Based on Videos 

Detecting lane markings is the basis of extracting lane semantic 

information, so the first step of the proposed approach is to 

detect lane boundaries from video images. To simplify 

complicated lane detection problem, we assume the following 

conditions: (1) strong image noise does not exist; (2) the road 

width is fixed or changes slowly and the road plane is flat; (3) 

the camera frame axis stays parallel to the road frame plane. 

These assumptions can improve the effectiveness and real-time 

performance of the detection algorithm. 

 

The flow diagram of the whole detection algorithm is shown in 

Figure 2.First, the input road images need be preprocessed, 

including selecting the road portion of images as the Region of 

Interest (ROI), converting RGB images into YUV colour space 

and median filtering. Second, the gradient direction feature is 

applied to the processed images to detect lane boundaries. 

Subsequently, binary images of lane boundary points are 

acquired. 

 

Figure 2. Flow diagram of the whole detection algorithm 

 

Lanes in the road images have the feature of extending in the 

vertical direction, so we use the grayscale feature in the 

horizontal direction to detect lane edges. Figure 3 is the 

grayscale of pixel points in the horizontal direction selected 

from the image. There are four points have a sudden increase in 

the grayscale compared to the previous point, which correspond 

to the left edge of the lane markings in the road image. There 

are four points have a sudden decrease in the grayscale 

compared to the previous point, which correspond to the right 

edge. 

 

We assume that the grayscale of the pixel point (x, y) in the 

image is L(x, y), and define the gray differential value in the 

horizontal direction ∆L(x, y) is: 

 

      , , 1,L x y L x y L x y      (1) 

 

Figure 4 is the grayscale differential values in the horizontal 

direction. In this paper, only the right edge of the lane is 

considered, so the negative values are ignored. The edge points 

of the lane are not only satisfied that the grayscale is 

significantly larger than the grayscale of non-lane points , but 

also have the characteristic that the grayscale significantly 

decrease at the edge of the lane. Therefore, the edge points of 

the lane can be detected by using the characteristic of the 

grayscale differential value. The grayscale threshold and the 

grayscale differential value threshold are respectively 

represented by T and ∆T. When L(x, y)>T and ∆L(x, y)>∆T are 

both satisfied, the pixel point is considered as an edge point of 

lane markings. 

 

 

Figure 3. The grayscale corresponding to the pixels on the 

horizontal axis 

 

Figure 4. Grayscale differential value in the horizontal direction 

 

3.2 Lane Recognition 

 

3.2.1 Lane Boundary Fitting:  

After getting the binary image of the edge points, these edge 

points are needed to be fitted into lines. There are many 

researches and models on lane markings fitting. The simpler 

models include mathematical models such as linear, quadratic 

and cubic fitting. The more complex models include B-Snake 

and Catmull-Rom Spline (Geng et al, 2011). 

 

In this paper, the improved Probabilistic Hough transform is 

used to fit the lane markings. The results of the original Hough 

transform method are greatly affected by the threshold and the 

fitting results often contain mistakes such as containing some 

non-lane markings or fitting repeatedly. We add the slope 

feature of the lines into Hough transform, combine the straight 

lines whose slope differential value is less than the threshold 

range, and finally obtain the more correct lane lines. Figure 5 

shows the result of lane line fitting in one road image. 
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Figure 5. An example of lane boundary fitting 

 

3.2.2 Imaging Model of the Onboard Camera  

The imaging model of the camera describes the mapping 

relationship between the 2-D coordinates of the points on the 

captured road images and the 3-D coordinates of those points. 

Five coordinate systems are included in this experiment: 

(1)Pixel Coordinate System: The upper left corner of the image 

is the origin of the coordinate, and the u axis and the v axis 

respectively correspond to the columns and rows in the image 

array. 

(2)Image Coordinate System: This coordinate uses the principal 

point as the origin. The X axis is parallel to u axis of the pixel 

coordinate and the Y axis is parallel to v axis. 

(3)Camera Coordinate System: This coordinate uses the 

Projection Center of the camera as the origin. XC axis and YC 

axis are respectively parallel to X axis and Y axis of the image 

coordinate, and ZC axis is the optical axis of the camera. 

(4)Car Coordinate System: The intersection of the car's vertical 

centerline and the road surface is the origin. XV axis points to 

the front of the vehicle's vertical axis, which is parallel to the 

car's driving direction. YV axis points to the right of the vehicle's 

vertical axis. ZV axis points above the vehicle's vertical axis.  

(5)World Coordinate System: This coordinate defines the 

locations of object points in the 3-D space. Beijing 1954 Gauss 

Kruger projection coordinate system and WGS-1984 

geographic coordinate system are adopted. The points of lanes 

are finally represented by the WGS-1984 geographic coordinate.  

 

The imaging process of the camera is the conversion between 

each coordinate system. It is important to figure out coordinate 

transformation before camera calibration. Pixel coordinate is 

converted to image coordinate: 

 

 
 

 
0

0

x

y

x u u d

y v v d

  


 
  (2) 

 

where  x, y = image coordinates 

 u, v = pixel coordinates 

 u0, v0 = principal point coordinates 

 dx, dy = the physical dimensions of X axis and Y axis 

 

Transformation between image coordinate and camera 

coordinate is: 

 

 
i x c c

j y c c

x f d y x

y f d z x




 
  (3) 

 

where  fi, fj = focal length 

 xc, yc, zc = camera coordinates  

 

 

Figure 6. The relationship between camera coordinate and car 

coordinate 

 

The direction angle ψ is a rotation angle between the main 

optical axis of the camera and the XV axis of the car coordinate, 

whose positive direction points to the left side of the car. The 

roll angle φ is a rotation angle between the main optical axis 

and the YV axis, whose positive direction is clockwise. The pitch 

angle θ is around the ZV axis, whose positive direction is above 

the vertical axis of the car. The position of the optical centre in 

car coordinate system is t= (l, d, h). The transformation between 

car coordinate system and camera coordinate system can be 

represented by R and t: 

 
1 1T T T T T T T T T T

V C C V VP R P t P R P R t R P R t         

                                                                 (4) 

 

where  PV = car coordinates 

 PC = camera coordinates 
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There is a translation and rotation relationship between the 

world coordinate system and the car coordinate system. The 

angle between the XV axis and the XW axis of the world 

coordinate system is α, and the conversion relationship is: 

 

 
cos sin

sin cos

w v v w

w v v w

x x y X

y x y Y

 

 

  


  
  (5) 

 

where  xw, yw = world coordinates 

 xv, yv = car coordinates 
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(Xw, Yw) can be obtained by the camera. Α can be calculated by 

two adjacent images: 

 

 2 1

2 1

arctan w w

w w

Y Y

X X


 
  

 
  (6) 

 

where Xw1, Yw1 = the current image coordinates 

 Xw2, Yw2 = the next image coordinates 

 

3.2.3 Calculate the Position of Lanes 

There are six parameters describing imaging posture and 

location of the camera: 3 rotation angle- direction angle ψ, roll 

angle φ and pitch angle θ, and 3 translation components- l, d 

and h. This paper uses the vanishing point principle to calibrate 

camera parameters and does not require a specific calibration 

field. In accordance with the perspective projection principle of 

camera, three mutually non-coincident parallel lines have same 

vanishing point and different slopes on imaging plane (Li et al, 

2004).Thus, the external parameters of the camera can be 

represented by a mathematical expression associated with 

parallel lane markings and vanishing point. 

 

For a random line L parallel to the XV axis, if the distance from 

L to XV is a, the equation in the car coordinate system can be 

expressed as: 

 

 , , 0v v vx s y a z     (7) 

 

where  a = any real number 

 

To image this line, it needs to be transformed into the camera 

coordinate system. From (4), the equation of L in the camera 

coordinate system is: 
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Finally, it is transformed into image coordinate system. From (3) 

and (8), the equation of L in the image coordinate system is: 
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                                                       (9) 

 

The vanishing point of L in the image coordinate system is (uh, 

vh). Because s is an any real number and the distance between 

the optical center of the camera in XV axis is l, there is an any 

real number after andding or subtracting between s and l: 
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                                                                (10) 

 

If there are at least three lane markings parallel to XV on the 

road surface, the distance between them and XV axis is a1, a2 

and a3. Their vanishing point is: 

 

 1 2 3 1 2 3h h h h h h h hu u u u v v v v     ，   (11) 

 

The slope of the three lines can be computed: 
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n=1, 2, 3…                                             (12) 

 

Rotation angles ψ, φ and θ, and translation components l, d and 

h can be computed: 
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where 
1A sin cos cos cosr       

   1cos sin sin cos sin cos cos sin sin sinB r               

2 sin cos cos cosC r     

   2cos sin sin cos sin cos cos sin sin sinD r             

    / / , 1,2,3...n j i h n h nr f f i i j j n      

 

From(13), when we know the camera internal parameters fi, fj 

and u0,v0, the distance between any three lane markings on 

video images in the car coordinate system and XV axis- a1, a2 

and a3, and any other points on the three lanes in pixel 

coordinate system, the external parameters of camera can be 

calculated. 

 

When calibration parameters of the camera are calculated, we 

can calculate the position of lane points by the coordinate 

transformation. On the assumption of flat road plane (zv=0), we 

can get from (4) and (9): 
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The coordinates of the lane points in the car coordinate system: 
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                                                      (15) 

 

3.3 Semantic Information Extraction of Lanes 

3.3.1 Lane Characteristics Analysis 

The lane semantic information is obtained according to the 

types of lane markings. Lane markings have colour features, 

single or double line features, and dashed or solid line features. 

The traffic semantics represented by different types of lane 

markings are different. The two colours of the lines are white 

and yellow. It is found that the Cb component value of the 

yellow lane line under various lighting conditions is the 

smallest. So the Cb component ICb in the YCbCr colour space 

of the lane edge points can identify the colour. The white line is 

usually the dividing line between lanes running in the same 

direction, and the yellow line is the dividing line between lanes 

that drive in opposite directions. In order to distinguish single 

line or double line, it is necessary to use the actual distance 

value Id of the lane to judge. Define a ratio Iratio, which means 

that the number of points on each lane line in the road binary 

image with the value of 255 is divided by the number of all 
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points on the straight line where the lane line is located. Iratio is 

used to distinguish dashed line, solid line or double solid line, 

double dashed line, solid-dashed line/dashed-solid line. The 

solid-dashed line and the dashed-solid line are distinguished by 

the relative position. On the side of the solid line, the vehicle is 

not allowed to overtake, change the lane or turn around, while 

on the side of the dashed line the vehicle is allowed to overtake, 

change lanes or turn around in a safe condition. As shown in 

figure 7, carriageway (a) is composed of Lane1 and Lane2. 

Double solid yellow line on the left of Lane1, used to separates 

traffic in the inverse direction, while the dashed white line on 

the right of Lane1, used to separates traffic in the same direction. 

Therefore, Lane1 means that you can’t turn left but you can turn 

right. On the right side of the Lane2 lane is the solid white line, 

which is the boundary line of the road. Lane2 means that you 

can’t turn right but can turn left. The carriageway (b) is 

composed of Lane3 and Lane4. Left lane marking of Lane3 is 

same with Lane1, and the right lane marking of Lane3 is dashed 

white line, so it can turn right. The left lane marking of Lane4 is 

a solid-dashed white line, so it is not allowed to turn left 

because it is closer to the solid line. Lane3 means that you can’t 

turn left but can turn right, and Lane4 means that you can’t turn 

left but can turn right. 

 

 
 

Figure 7. An example of semantic information extraction of 

lanes 

 

 

3.3.2 Lane Semantic Information Extraction by 

Classification of Decision Trees 

Decision tree model is a top-down tree structure in which each 

internal node represents an attribute of data, each branch 

represents a judgement, and each leaf node represents a class 

label. The top node of the tree is the root node of the decision 

tree (Friedl et al, 1999). We use a decision tree model to 

classify the lane markings into the following twelve types:  solid 

white lines, dashed white lines, double solid white lines, solid-

dashed white lines, dashed-solid white lines, double dashed 

white lines, solid yellow lines, dashed yellow lines, double solid 

yellow lines, solid-dashed yellow lines, dashed-solid yellow 

lines, double dashed yellow lines. First，determine the colour 

of the lane markings: as the value ICb is larger than the threshold 

value T1, the colour of lane markings is white, otherwise the 

colour is yellow. Then, as the value Id is larger than the 

threshold value T2, it is a single line, otherwise it is a double 

line. Using Iratio to distinguish single dashed lines and single 

solid lines, distinguish double solid line, double dashed line, 

dashed-solid line/solid–dashed line. As the value Iratio is larger 

than the threshold value T3, it is a solid line, otherwise it is a 

dashed line. As the value Iratio is larger than the threshold value 

T4, it is a double solid line; while the value Iratio is less than the 

threshold value T5, it is a double dashed line; the rest is dashed-

solid lines and solid-dashed lines. Finally, we distinguish 

dashed-solid line and solid-dashed line by judging the left line 

of double line, the value Iratio of the left line of double line is 

larger than the threshold value T3, it is a solid–dashed line, 

otherwise it is a dashed-solid line. Decision tree model is shown 

in figure 8. 

 

 

Figure 8. The decision trees model 

 

4. EXPERIMENTAL ANALYSIS 

The experimental data in this paper is a road video from a 

mobile phone. The phone is fixed in front of the car's 

windshield, and its video is the road ahead of the driving car. 

The time interval between the selected video images was 2 

seconds. There are 216 images, and the resolution of each 

image is 3264*2448.Each image has a location coordinate. The 

experimental area was Bayi Road in Wuhan. The road surface is 

flat, and the road condition is better because of few cars. 

 

4.1 Lane Location Results 

After calculating the six parameters describing imaging posture 

and location of the camera, input the detected lane marking 

edge points which are pixel coordinates, then get the final 

WGS-1984 geographic coordinates. In this paper, the 

centerlines of the left and right lane markings are used to 

represent the lanes. The real coordinates of the lane centerline 

are calculated. The results of one section of the road test are 

shown in Figure 9. Because there is no real accurate lane 

reference data, this paper converts the lane centerlines data into 

Keyhole Markup Language (KML) files for using Google Earth. 

We can have a qualitative accuracy evaluation with the images 

in Google Earth. Figure 9(b) is a partial enlarged view of the 

results. We can see that the positional deviation between the 

lane we calculated and the lane in the image is very small. 
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(a) An example of lane location results 

 

 
(b) An example of superposition results of lane centerlines on 

Google Earth. 

Figure 9. Lane location results 

 

 

 

4.2 Lane Semantic Extraction Results  

Sampling method is used to obtain the optimal threshold in the 

experiment, and statistics are made for the correct rate of 

decision tree classification under different thresholds. Among 

the 216 images, 186 of them can be correctly detected. 

Therefore, 120 of these correctly detected numbers are used as 

the training set of the decision tree classifier, and the remaining 

66 are used as test sets. Tests have shown that when T1= 100, 

T2= 1.5, T3= 0.9, T4= 1.8, T5= 1.2, the best classification results 

are obtained. In the 66 road images, there are 3 classification 

objects for each, so there are a total of 198 test subjects. In the 

experiment, 182 objects were accurately identified and the 

recognition accuracy was 91.92%. Fig. 10 shows the lane 

recognition results of various semantics in the test section. As 

can be seen from Fig. 10, the method can recognize the lane 

semantics better. The figures identified in the images 

corresponds to the type of lane type in Fig. 8. The main reason 

for wrong identification is solid white, which is similar to 

double dashed white. This wrong identification needs to be 

improved. 

 

 

Figure 10. Examples of accurate lane semantic extraction 

 

4.3 Evaluation on the experiment method 

The results of this paper are compared with a method to lane 

markings real-time detection (Aly, 2008) and a method of real-

time detection and classification to lane markings detection 

(Paula et al, 2013). The comparison results of the three methods 

are shown in table 1.Aly’s Method is based on generating a top 

view of the road, filtering using selective oriented Gaussian 

filters, using RANSAC line fitting. This algorithm can detect all 

lanes in images of the street in various conditions, but it can’t 

locate the lane and extract the semantic information. Paula’s 

method adopted a cascade of binary classifiers to distinguish 

markings, but it only have five types-dashed, dashed-solid, 

solid-dashed, single-solid and double-solid. This method can’t 

extract the semantic information or locate lanes. This paper 

proposes a method of extracting lane position and semantic 

information, which benefits to the research on high-precision 

lane-level road maps. 

 

Method 
Detection 

accuracy 

Lane 

location 

Lane 

classification 

Lane 

semantic 

extraction 

Aly’s 85%-90%    

Paula’s 85%-90%  88.30%  

Proposed 85%-90%  91.92%  

Table 1. Comparison of experimental results  

 

5. CONCLUSION 

Based on the detection of lane markings in video images, this 

paper proposes a method of lane detection and semantic 

information extraction. The method starts from the detection 

and fitting of lane marking edges in the road images, calculates 

the lane position by vanishing point principle, and uses the 

decision tree classification method to identify the lane semantic 

information. 

The method presented in this paper still has some drawbacks. It 

has poor detection results for the lane markings of roads or road 

intersections with large numbers of vehicles, affecting the 

subsequent results of lane positioning and semantic recognition. 

In the future, it will further improve the detection of lane 

markings in more complicated environment, detect road signs to 

increase the steering information of lanes, and complete lane-

level road maps information. 
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