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ABSTRACT: 

 

Multi-temporal Earth Observation and Mars orbital imagery data with frequent repeat coverage provide great capability for planetary 

surface change detection. When comparing two images taken at different times of day or in different seasons for change detection, the 

variation of topographic shades and shadows caused by the change of sunlight angle can be so significant that it overwhelms the real 

object and environmental changes, making automatic detection unreliable. An effective change detection algorithm therefore has to be 

robust to the illumination variation. This paper presents our research on developing and testing an Illumination Invariant Change 

Detection (IICD) method based on the robustness of phase correlation (PC) to the variation of solar illumination for image matching.  

The IICD is based on two key functions: i) initial change detection based on a saliency map derived from pixel-wise dense PC matching 

and ii) change quantization which combines change type identification, motion estimation and precise appearance change identification. 

Experiment using multi-temporal Landsat 7 ETM+ satellite images, Rapid eye satellite images and Mars HiRiSE images demonstrate 

that our frequency based image matching method can reach sub-pixel accuracy and thus the proposed IICD method can effectively 

detect and precisely segment large scale change such as landslide as well as small object change such as Mars rover, under daily and 

seasonal sunlight changes. 

 

1. INTRODUCTION 

The detection of dynamic changes on the planet’s surface is not 

only important for the monitoring of agriculture, deforestation and 

urbanization on Earth but also essential for the understanding of 

geology structure, climate and environment on Mars. Some of 

these changes are big and significant, such as geo-hazards (Cheng, 

Wei, and Chang 2004; Lu et al. 2011), glacier motion(Berthier et 

al. 2005; Kaufmann and Ladstädter 2003) and sand dune 

migration, and some are small, for example a newly built house 

or a recently landed Mars rover. The growing archive of repeat 

coverage and the increasing spatial resolution of Earth 

Observation and Mars orbital images, enable the detection and 

quantitative measurement of these changes.  

 

When comparing two images taken at different times of day or in 

different seasons for change detection, the variation of 

topographic shades and shadows caused by the change of sunlight 

angle can be so significant that it overwhelms the real object and 

environmental changes. This effect caused by the local 

illumination variation is more problematic on Mars than that on 

Earth as the shadows and shades appearing on Mars orbital images 

are darker than those on Earth Observation images because of the 

thinner density of atmosphere. As this illumination variation not 

only alters image contrast and brightness but also imagery spatial 

patterns/textures, making image co-registration inaccurate and 

automatic detection unreliable. 

 

2. RELATED WORK 

The state-of-the-art change detection algorithms remove the 

illumination effects by radiometric correction (Schroeder et al. 

2006), which can be divided into three main categories: 

normalization(Lillestrand 1972; Dai and Khorram 1998), 

filtering-based correction (Toth, Aach, and Metzler 2000) and 

shadow removal (Duguay and Ledrew 1992). The normalization 

and filtering-based radiometric correction methods, though robust 

to global illumination variation caused by solar strength variation, 

are not robust to local illumination variation caused by the 

sunlight angle variation. The shadow removal method may result 

in over compensation in areas of deep shadows of steep slopes 

(Tan et al. 2013).  

 

While the global illumination variation issue has been well 

studied and effectively dealt with, to the best of our knowledge, 

there are no change detection methods truly robust to both global 

and local illumination variation caused by the sunlight angle 

variation. Thus, a Phase Correlation based IICD (Illumination 

Invariant Change Detection) is proposed to robustly detect and 

precisely segment the changes on planet’s surface regardless of 

illumination variation and imaging geometry.  

 

3. PRINCIPLE OF PHASE CORRELATION BASED 

ILLUMINATION-INSENSITIVE CHANGE DETECTION 

3.1 Illumination-insensitive property of Phase Correlation 

Phase Correlation (Kuglin 1975) is an image matching algorithm 

based on Fourier shift property, which states that a translation 

shift between two similar images generates a linear phase 

difference in the Fourier frequency domain. For two images, 

𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) , with a horizontal and vertical translation 
(𝑎, 𝑏) , the phase correlation is defined as the cross power 

spectrum of the Fourier Transform (FT) of the two images, which 

is a complex conjugation of the two frequency spectrums.  
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𝑄(𝑢, 𝑣) =

𝐹(𝑢, 𝑣)𝐺∗(𝑢, 𝑣)

|𝐹(𝑢, 𝑣)𝐺∗(𝑢, 𝑣)|
= 𝑒𝑖(𝑎𝑢+𝑏𝑣) 

(1) 

 

where * stands for complex conjugate, 𝐹(𝑢, 𝑣) and 𝐺(𝑢, 𝑣) are 

the Fourier transforms of the matched images 𝑓(𝑥, 𝑦)  and 

𝑔(𝑥, 𝑦).  

 

In Equation (1), 𝑄(𝑢, 𝑣) is a 2π wrapped complex matrix and the 

density and orientation of phase correlation fringes are √𝑎2 + 𝑏2 

and 𝑏/𝑎 . As long as the two images are largely overlapped 

(usually more than1/4 image size), the shifts (𝑎, 𝑏)  can be 

resolved at integer level via IFT (Inverse Fourier Transform) to 

convert 𝑄(𝑢, 𝑣) to a Dirac delta function 𝛿. 

 

 
𝐼𝐹𝑇(𝑄(𝑢, 𝑣)) = 𝛿(𝑥 − 𝑎, 𝑦 − 𝑏) 

(2) 

 

Dirac delta function 𝛿  is a unit impulse function, which the 

coordinate of the impulse peak (𝑎, 𝑏)  is the image shift. The 

translation (𝑎, 𝑏) can also be solved directly in frequency domain 

by unwrapping and fitting the fringe patterns in the cross power 

spectrum 𝑄(𝑢, 𝑣) (Foroosh, Zerubia, and Berthod 2002; Hoge 

2003; Liu and Yan 2008; Morgan, Liu, and Yan 2010). The peak 

value of Dirac delta function 𝛿, ranging from 0 to 1, indicates the 

quality of PC matching. If the two images are exactly the same, 

the peak value of 𝛿 equals 1.  

 

Equation (1) is established based on the assumption that the two 

images for matching are radiometrically similar however, the two 

images are not very similar in radiometry if they are taken under 

different lighting conditions. According to our research (Wan, 

Liu, and Yan 2014), the PC matrix 𝑄(𝑢, 𝑣) of two images with a 

translational shift and under different illumination conditions can 

be decomposed into two independent phase correlation matrices: 

the illumination impact matrix 𝑄1(𝑢, 𝑣)  corresponding to 

texture difference caused by illumination variation and the 

translation matrix 𝑄2(𝑢, 𝑣) =  𝑒−𝑖(𝑢𝑎+𝑣𝑏) resulted from the 2D 

shifting. 

 
𝑄(𝑢, 𝑣) = 𝑄1(𝑢, 𝑣) ×  𝑄2(𝑢, 𝑣) 

(3) 

 

For image matching, 𝑄1(𝑢, 𝑣) and 𝑄2  (𝑢, 𝑣) are unknown and 

only 𝑄(𝑢, 𝑣) can be calculated directly from phase correlation. 

For illumination-insensitive image matching, the aim is to extract 

the translation matrix  (𝑄2(𝑢, 𝑣)) from the PC matrix 𝑄(𝑢, 𝑣). 

The illumination-invariant matching can be achieved by 

suppressing or eliminating the impact of 𝑄1(𝑢, 𝑣) from 𝑄(𝑢, 𝑣).  

 

Our study (Wan, Liu et al. 2015) reveals how 𝑄1 is determined 

by sun illumination conditions. An auxiliary 3D space named as 

SAI (Slope-Aspect-Intensity) was proposed to present the 

intensity of hill shading image and terrain slope/aspect angles in 

a given illumination conditions. Based on the SAI space, the 

relationship between PC cross power spectra and local 

illumination conditions in terms of azimuth angle and zenith 

angle is investigated via mathematical derivation and 

experiments. The azimuth angle variation divides the PC fringes 

into positive correlation and negative correlation corresponding 

to the azimuth angle difference, because partial image texture is 

reversed by azimuth angle variation. The change of zenith angle 

alters image brightness and contrast but does not cause reverse of 

image texture, which is similar to adding random noise to the 

image phase correlation and the larger difference the zenith 

angles are, the more noisy the 𝑄1 matrix will be. The detailed 

derivation of impact of azimuth and zenith change on phase 

correlation matrix can be found in (Wan, Liu et al. 2015). Recent 

study demonstrates that the zenith angle will also modulate the 

strength of negative correlation; the negative fringe pattern 

becomes clearer with the increase of zenith angles. 

 

Consequently, the inversed fringes caused by azimuth angle 

difference and increased noise caused by zenith angle variation 

appear in the PC matrix but the fringe density √𝑎2 + 𝑏2  and 

fringe orientation a/b remain unchanged and therefore PC 

algorithm is not sensitive to illumination variation. 

 

3.2 Change type identification based on a Dirac delta 

function of Phase Correlation 

As proved in §3.1, PC is robust to local illumination change, so 

the illumination change will not alter the distinctiveness of Dirac 

delta function peak which indicate image shift. Thus the 

alteration of Dirac delta function performance is only related to 

change information. In this section, we will further investigate 

the ability of PC to detect the motion and appearance change 

under illumination change conditions is investigated. For change 

detection, all the pixels in images can be generalised into the 

three scenarios, no change, appearance change and motion. The 

corresponding performances of Dirac delta function 𝛿, according 

to Equation (2),  are presented. An approach to differentiate the 

change information into motion and appearance change from the 

PC change detection result is thus introduced. 

 

Case 1 No change 

As PC is robust to illumination change proved by §3.1, when 

there is no change in two images taken under different 

illumination conditions, the calculated Dirac delta function 𝛿 has 

a clear the peak value at (0,0) position reflecting 0 image shift in 

x and y direction.  

 

Case 2 Large appearance change 

When there a large appearance change (> ½ size of the image 

matching window) in two images, 𝛿 function becomes very noisy 

indicating that the two regions in the matching window have a 

low correspondence rate. In this case, the 𝛿 peak value is too low 

to be distinctive and consequently, the image shift calculated 

from 𝛿 is a random number rather than 0.  

 

Case 3 Small appearance change 

When the appearance change is smaller than ½ size of the 

matching window, the remaining part in the matching windows 

can still be correlated by Phase Correlation. In this case, the peak 

value of 𝛿  drops considerably owing to partial de-correlation, 

caused by small appearance change, but the peak is distinctive 

enough at the (0,0) location reflecting 0 image shift in x and y 

direction. 

 

Case 4 Motion 

When there is object motion within the matching window of PC, 

the related 𝛿 will have a clear peak because the appearance of the 

moving object remains the same and the location of the maximum 

peak value indicates the object shift in x and y direction.  

In summary,  𝛿 from PC matching will have a clear peak in (0,0) 

position when there is no change; the peak value of 𝛿 decreases 

for appearance change depending on the areal size of the change; 

and the object motion shifts the location of 𝛿 peak away from 

(0,0) position depending on the motion value. The combination 

of 𝛿  peak values and peak locations can therefore detect the 

change and classify different types of change as characterised in 

Figure 1.  
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Figure 1 Basic criterion for PC based change detection 

 

A pixel will be labelled as ‘no change’ for a very small disparity 

value with a high 𝛿 peak; as ‘motion’ for a large disparity value 

with a high 𝛿 peak; as ‘appearance variation’ for a large disparity 

value with a very low 𝛿 peak.  

 

4. PC-BASED IICD ALGORITHM 

As presented in §3.1, Phase Correlation is proved to be robust to 

local illumination change in terms of azimuth and zenith angle 

variation, and the change type can be indicated by the 

performances of Dirac delta function in PC matching, thus a PC 

based IICD algorithm is proposed. The process flow chart of the 

IICD algorithm is shown in  

 

Figure 2.  

 

The system is composed of two main steps: initial IICD and 

change quantization. The two multi-temporal optical images, T1 

and T2, are firstly co-registered pixel by pixel by PC based dense 

matching (§4.1.1), which results in three outputs: disparity maps 

in x and y direction, 𝐷𝑥  and 𝐷𝑦 , and 𝛿 peak value map P. 

Meanwhile, a subtraction map S and a ratio map R are generated 

by the co-registered T2 images and T1 image. Based on the values 

of P,  𝐷𝑥 and 𝐷𝑦, an initial change detection map 𝐶0 is generated, 

in which no change areas are regions which have small disparity 

values and large 𝛿 peak values, and change areas are the rest 

regions.  

 

 
 

Figure 2 Flow chart of and development path of the proposed 

IICD. 

 

For the change quantization part, the detected change area in C0 

are further classified into motion and appearance changes 

according to the criterion proposed in §3.2 and then a sub-pixel 

motion estimation algorithm (§4.2.2) applies on the motion area 

while a precise boundary identification algorithm (§4.2.3) is 

carried out to further classify the appearance change areas into 

texture and object change. A final refined change map C1 is then 

generated includes the information of precise change areas, sub-

pixel motion shifts and change types.  

4.1 Initial IICD 

4.1.1 Pixel-wise PC based dense matching: The precise 

pixel-wise image co-registration is not always achievable 

especially when local illumination varies. From the previous 

analysis in §3.1, Phase Correlation is robust to illumination 

variation. Thus an illumination invariant dense matching is 

carried out as follows: The pair of multi-temporal images, T1 and 

T2, is firstly aligned by Phase Correlation based image matching 

to remove the global geometric shifts between the two images. 

Then a pixel-wise co-registration (Liu and Yan 2008) is carried 

out by a small corresponding window pair that scans throughout 

the images, pixel-by-pixel, to estimate the disparity values in x 

and y directions, 𝐷𝑥(𝑖, 𝑗)  and 𝐷𝑦(𝑖, 𝑗) , between the window’s 

central pixel in image 𝑇1(𝑖, 𝑗)  and the corresponding pixel in 

image 𝑇2(𝑖, 𝑗) , as shown in Figure 3.  

 

 

Figure 3 Pixel-wise PC based dense matching 

Meanwhile the corresponding Dirac delta peak value 𝑃(𝑖, 𝑗) is 

also calculated through the PC based dense matching. Finally, 

disparity maps 𝐷𝑥 and 𝐷𝑦 are generated to rectify image T1 to the 

reference image T2 pixel-to-pixel. As 𝐷𝑥 and 𝐷𝑦 are calculated in 

sub-pixel accuracy, the pixel-wise image geometric distortion 

has been rectified in a new co-registered T2 image. A subtraction 

image S and a ratio map R is generated by the initial image T1 and 

the co-registered T2 image.  

 

4.1.2 Initial change map generation: According to the 

analysis in §3.2, the change areas are discontinuous regions in 

disparity maps 𝐷𝑥  and 𝐷𝑦 . To extract the candidate areas for 

change detection, a GBVS (Graph-Based Visual Saliency) 

method (Harel, Koch, and Perona 2006) is applied. Inspired by 

the mechanism of the neural network system, a saliency map is 

generated by integration of several low-level image features (Itti, 

Koch, and Niebur 1998), such as intensity, orientation, colour, 

etc. to formulate a high-level visual attention map.  

To integrate 𝐷𝑥  and 𝐷𝑦 , a pixel shift magnitude map 𝑀  is 

computed as 

 
𝑀 = √𝐷𝑥

2 + 𝐷𝑦
2 

 

(4) 

 
A saliency map is computed from the pixel shift magnitude map 

𝑀 . The changes are defined as regions with high intensity 
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contrast and large orientation variation in the magnitude map 𝑀. 

The GBVS approach leaves the room for further incorporation of 

other features such as spectral and textural properties. 

First, the pixel shift magnitude map 𝑀 is decomposed into two 

types of feature vector maps, intensity vector maps 𝐼(𝑐, 𝑠) and 

orientation vector maps 𝑂(𝑐, 𝑠, 𝜃) . Intensity vector 𝐼(𝑐, 𝑠) 

describe local contrast by the difference between coarse and fine 

image scales generated by Gaussian pyramids (Itti, Koch, and 

Niebur 1998) 

 

 
𝐼(𝑐, 𝑠) = |𝑀(𝑐) ⊖ 𝑀(𝑠)| 

 

(5) 

 
where 𝑐𝜖{2,3,4}  represent fine scale, 𝑠 = 𝑐 + 𝛽, 𝛽 ∈ {3,4} 

represent coarse scale in Gaussian image pyramid obtained by 

filtering the magnitude map 𝑀 by a dynamic blur factor 𝜎. ⊖ 

denotes centre-surround difference between Gaussian image 

pyramid. Six intensity vector maps 𝐼(𝑐, 𝑠) are generated. 

Orientation vector 𝑂(𝑐, 𝑠, 𝜃)  describe the local orientation 

variation by calculating the difference between coarse and fine 

scales in Gabor pyramid (Itti, Koch, and Niebur 1998). 

 
𝑂(𝑐, 𝑠, 𝜃) = |𝑂(𝑐, 𝜃) ⊖ 𝑂(𝑠, 𝜃)| 

 

(6) 

 
where 𝜃 ∈ {0°, 45°, 90°, 135°}.  𝑂(𝑐, 𝜃)  and 𝑂(𝑠, 𝜃)  represent 

coarse and fine scales in Gabor pyramid generated by applying 

Gabor filters in the four directions to the magnitude map 𝑀. 24 

orientation vector maps 𝑂(𝑐, 𝑠, 𝜃) are computed. 

 

The 6 intensity vector maps and 24 orientation vector maps are 

combined together to generate a single normalised saliency map. 

The GBVS method (Harel, Koch, and Perona 2006) uses a 

bottom-up approach based on graph cut, which includes two steps: 

i) activation map generation based on finding unusual values in 

feature vector maps and ii) generation of saliency map by 

normalisation of activation map. The final saliency map ranges 

from [0,1]. Large saliency values indicate high probability of 

changes. Thus, an initial change detection map, a binary mask, is 

produced by extracting the large values in the saliency map using 

a global threshold 𝑇𝑠. The suggested threshold value for  𝑇𝑠 is 0.5, 

which has been proved effective through all the tested image 

pairs. This threshold can be used a filter to remove the unwanted 

changes, if a large 𝑇𝑠  is given, for example 0.8, only the 

significant changes will be detected, and some small changes 

may be neglected.  

 

4.2 Change Quantization 

4.2.1 Change type identification: From the previous step, an 

initial change detection mask 𝐶0 has been generated with several 

candidate areas. The next step is to classify the candidate change 

areas into two different change types: motion and appearance 

change, according to the criterion proposed in §3.2. For each 

candidate change region, a high-low thresholding scheme is 

proposed to differentiate ‘motion’ and ‘appearance change’. 

According to the analysis in §3.2, ‘motion’ produces high  𝛿 

peaks while ‘appearance change’ produces low  𝛿  peaks. Two 

thresholds, 𝑇𝑝ℎ  as high threshold and 𝑇𝑝𝑙  as low threshold are 

introduced for the change type identification as demonstrated in 

Figure 4.   

 

 

Figure 4 Flowchart of change type determination 

Motion identification is carried out as follows: in the current 

candidate area k, the mean value of 𝛿  peak 𝜇𝑘 is calculated. If 

the value 𝜇𝑘  is larger than the high threshold 𝑇𝑝ℎ , 𝜇𝑘 > 𝑇𝑝ℎ , 

where 𝑇𝑝ℎ = 𝜇3 , and 𝜇3  is mean value of  𝛿 peak probability 

distribution map 𝑝(𝑃), this area will be labelled as ‘motion’.  

 

The reason for motion identification in the first step of the 

approach, is that object motion leads to false appearance change 

around the moved object and to the so called ‘hallo effect’ (Wang 

et al. 2014). It is assumed that every candidate region of change 

only contains one change type, and thus if the candidate change 

region is assigned to ‘motion’, it cannot proceed to the next stage 

and has no chance of being labelled as ‘appearance change’.  

 

For the candidate areas which do not belong to ‘object motion’, 

the following judgment is carried out to check whether they 

belong to ‘appearance change’ or not.  

If the value 𝜇𝑘  in the candidate area meet the following 

requirement, 𝜇𝑘 < 𝑇𝑝𝑙 , where 𝑇𝑝𝑙 = 𝜇3 − 𝜀𝜎3
2 , this candidate 

area will be labelled as ‘Appearance change’.  

4.2.2 Subpixel motion detection: In §4.1.1, the motion shift 

of every pixel has been determined by PC based pixel-wise dense 

matching, and thus if the candidate area is assigned to ‘motion’ 

tag, the related object motion can be solved at sub-pixel accuracy. 

As indicated in §3.1, the value of 𝛿 peak presents the matching 

quality of PC, thus the motion value calculated with large 𝛿 peak 

value usually is more accurate in sub-pixel precision. Thus the 

estimated motion in x and y directions, 𝑀𝑥 and 𝑀𝑦, are calculated 

by weighted average of disparity values in disparity maps 𝐷𝑥 and 

𝐷𝑦, and the weights are determined by the 𝛿 peak value. 

 

 
𝑀𝑥 =

∑ 𝑃(𝑖, 𝑗)𝐷𝑥 (𝑖, 𝑗)

∑ 𝑃(𝑖, 𝑗)
 

𝑀𝑦 =
∑ 𝑃(𝑖, 𝑗)𝐷𝑦 (𝑖, 𝑗)

∑ 𝑃(𝑖, 𝑗)
 

(7) 

 

 

where 𝑃(𝑖, 𝑗) is the value of the pixel (𝑖, 𝑗) in 𝛿 peak value map 

𝑃, and 𝐷𝑥(𝑖, 𝑗) and 𝐷𝑦(𝑖, 𝑗) are calculated pixel motion values of 

the pixel (𝑖, 𝑗) in disparity maps 𝐷𝑥 and 𝐷𝑦. 

 

Candidate 
area k 

𝜇𝑘 > 𝑇𝑝ℎ 

𝜇𝑘 < 𝑇𝑝𝑙 

Motion 

No 
change 

Yes 

Yes 

No 

No 

Appearance 

change 
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4.2.3 Precise appearance change identification: For the 

appearance change areas, it is essential to extract the precise 

boundaries of the changing targets. As PC is a window based 

correlation operation, it introduces blurring effects (Aach, Kaup, 

and Mester 1993) to the change area boundaries. Based on the 

three features, 𝐷𝑥, 𝐷𝑦 and P, from PC based dense matching, the 

change areas can be roughly detected but the boundaries of 

change areas cannot be precisely determined. Thus, we added 

two more features based on subtraction map and ratio map for 

precise change area boundary estimation.  

 

As the change areas can be coarsely determined, the refinement 

of initial change mask 𝐶0 is based on local regions rather than the 

whole image. The binary mask 𝐶0 is processed by a blob analysis, 

which the adjacent ‘1’ region in 𝐶0 are clustered into one blob 

and the statistics (size and shape) of every blob in the change map 

𝐶0  are calculated. For each blob, a bounding rectangle box is 

calculated and the precise boundary is determined within the 

bounding box. Take the blurring effect caused by window based 

correlation into consideration; the bounding box expanded 𝑠 

pixels ( 𝑠 =
1

2
 window size) to the up, down, right and left 

directions to the minimum bounding box subjects to the outlines 

of the blob.  

 

For each blob within the neighbourhood region defined by the 

bounding box, three binary masks, 𝑄1 , 𝑄2  and 𝑄3  are firstly 

generated based on 𝐷𝑥, 𝐷𝑦 and P. The criterion is similar to the 

generation of 𝐶0 , but Bayes decision is made within the local 

probability distribution rather than the whole image. 

 

 
𝑄1(𝑠) = {

1, |𝑋1(𝑠) − 𝜇1| > 𝜀𝜎1
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(8) 

 

 
𝑄2(𝑠) = {

1, |𝑋2(𝑠) − 𝜇2| > 𝜀𝜎2
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(9) 

 

 
𝑄3(𝑠) = {

1, 𝑋2(𝑠) < 𝜇3 − 𝜀𝜎3
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(10) 

 

 

where 𝑋1(𝑠) , 𝑋2(𝑠)  and 𝑋3(𝑠)  is the value of 𝑝(𝐷𝑥) , 𝑝(𝐷𝑦) , 

𝑝(𝑃) a certain bounding box 𝐵(𝑠). 

 

Then, we added two more binary masks, 𝑄4 and 𝑄5, based on 

local ratio and subtraction map for precise change area boundary 

estimation. The change mask 𝑄4  is generated based on the 

extraction of large values in local ration map 𝑅(𝑠).  

 

Then, the anomalous large values in local ratio map 𝑅(𝑠) which 

subject to object change or texture change are extracted 

according to the following criterion to generate change mask 

𝑄4(𝑠)  

 

 
𝑄4(𝑠) = {

1, 𝑅(𝑠) < 𝜇4 − 𝜀𝜎4
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(11) 

 

where 𝜇4 and 𝜎4
2 are mean and variance values of  𝑅(𝑠). 

 

The binary mask 𝑄5 is generated using a morphological based 

segmentation algorithm to provide precise shape and contour 

information of the change areas. The local subtraction image 

𝑆(𝑠), as shown in Figure 5(b), is firstly transferred into a binary 

gradient mask, shown in Figure 5(c), by Canny edge detection 

algorithm (Canny 1986). The small gaps within the binary 

gradient mask is filled by dilation (Van Den Boomgaard and Van 

Balen 1992) and connectivity check (Soille 2013), presented in 

Figure 5(d) and (e). The change areas are segmented (Figure 5(f)) 

using a morphological erosion (Van Den Boomgaard and Van 

Balen 1992), and the largest area is detected to produce the final 

binary mask 𝑄5, as shown in Figure 5(g). The boundary tracing 

result based on 𝑄5 is shown in Figure 5(h). 

 

Figure 5 The process of generation binary mask 𝑄5 is based on 

a local subtraction image 

 

Although the local ratio and subtraction are algebraic 

manipulation which better preserve the boundary information, 

there are some limitations. Firstly, they are not truly local 

illumination invariant. If edges of long casting shadows remains 

in a bounding box 𝐵(𝑠), algebraic manipulation based methods 

are prune to have wrong estimations. Moreover, algebraic 

manipulation is better at boundary identification for object 

change rather than texture change; the latter type of change does 

not have a clear boundary to be extracted from the background.  

 

To balance the robustness and the precision of the IICD algorithm, 

a binary mask integration function 𝐹 is defined to stack the five 

binary mask together with various weighing factor 𝛼𝑖, 

 

 

𝐹 = ∑ 𝛼𝑖𝑄𝑖

5

𝑖=1

 (12) 

 

The determination of 𝛼𝑖 is carried out as follows: for each binary 

mask 𝑄𝑖(𝑠) , the percentage of change area 𝑝𝑒𝑟𝑐𝑖  within the 

bounding box 𝐵(𝑠) is calculated.  

 

 
𝑝𝑒𝑟𝑐𝑖 =

∑(𝑄𝑖 == 1)

𝑤 × ℎ
 

(13) 

 

 

where 𝑤 and ℎ are width and height of the bounding box 𝐵(𝑠). 

 

If the five 𝑝𝑒𝑟𝑐  have similar values, this means that the final 

result has a high confidence, since five binary mask 𝑄𝑖(𝑠) have 

similar change detection results. If one of the binary mask 𝑄𝑘(𝑠) 

has a completely different value to other four masks, the relating 

weighing factor 𝛼𝑘 will be assigned to a very small value.  If we 

assume that the probability density function of all 𝑝𝑒𝑟𝑐 obey a 

normal distribution, the binary mask 𝑄𝑖(𝑠) which are anomalous 

to others will have a significant lower probability. Thus, the 

weighing factor 𝛼𝑖 is determined as follows,  

(a) Initial 

image 
(b) Subtraction 

image 

(c) Binary 

gradient mask 

(d) Dilated 

mask 

(e) connectivity 

check 
(f) Segmented 

image 

(g) binary 

mask Q5 

(h) Boundary 

tracing result 
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𝛼𝑖 = 𝑝(𝑝𝑒𝑟𝑐𝑖; 𝜇𝑖 , 𝜎𝑖) 

(14) 

 

If the related weighing factor 𝛼3 and 𝛼4 are large, this means that 

the change detection results determined by 𝑄4  and 𝑄5 agree with 

the initial change detection results. As algebraic manipulation 

based masks,  𝑄4  and 𝑄5 , are better at localising the changing 

boundaries of object whereas less robust to texture change, a 

bonus factor 𝛽 = 0.3  is added to 𝛼3  and 𝛼4 , and the area is 

labelled as ‘object change’. This means that the refined change 

mask 𝐶1 in this area is largely depended on the local algebraic 

manipulation based segmentation. Otherwise, the candidate area 

will be marked as ‘texture change’, and refined change mask 𝐶1 

will be largely determined by the PC based dense matching.  

 

The refined change mask 𝐶1 is generated by the weighted binary 

map stacking according to Equation (12) and then transform in to 

a binary map by the morphological based segmentation algorithm 

as demonstrated in Figure 5.  

5. EXPERIMENT 

5.1 Snowdonia model under Daily Illumination Variation 

In this section, one datasets of Snowdonia terrain shading images 

under daily illumination conditions were acquired. The daily 

illumination conditions for the simple hill and Snowdonia dataset 

was shown in Figure 6 in terms of azimuth and zenith angles. It 

can be concluded that the major change of light source within a 

day is azimuth angle variation, and the azimuth angle difference 

between morning and afternoon can be as large as 115°. Thus, 

both of the dataset contain reversed image patterns caused by the 

severe azimuth angel variation. The largest zenith angle variation 

is 24°. 

 

  

Figure 6 Daily sun illumination variation in azimuth and zenith 

angles of the two dataset 

 

For the Snowdonia dataset, test objects were placed on the model 

to simulate change on terrain surface. There are eight areas with 

appearance difference between the two images of three types: 

linear object, 3D object and camouflage. 

 

The change detection accuracy is assessed by both precision and 

recall  

 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(15) 

 

where 𝑡𝑝 is the number of true positives: the ground truth image 

says it is a ‘change’ and our algorithm assigned it to a ‘change’; 

𝑓𝑝 is the number of false positive: the ground truth image says it 

is a ‘no change’ and the algorithm assigned it to ‘change’; 𝑓𝑛 is 

false negative: the ground truth image says it is a ‘no change’ and 

the algorithm assigned it to ‘no change’. 

 

A good change detection algorithm needs to have a high 

precision as well as recall, and thus a 𝐹1 score is calculated using 

the combination of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 
 

 
𝐹1 =

2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(16) 

 

The higher value 𝐹1  score the IICD algorithm has, the better 

change detection result the algorithm performs. 

 

For the Snowdonia model dataset, the ground truth image is 

generated by the subtraction of images with and without changes 

under the same illumination conditions, and then manually 

rectified the shape of each change area. The change detection 

accuracies of the Snowdonia model is presented in Figure 7 and 

the change detection results of one image pair taken at 11:45 and 

16:00 are demonstrated in Figure 8(b). 

 

 

Figure 7 Change detection accuracies by the proposed IICD 

algorithm using the Snowdonia dataset 

 

    

Figure 8 The example of change detection results of the 

Snowdonia model. 

 

5.2 Change detection in California using Rapid eye image 

This experiment is carried out using Rapid eye satellite image of 

California taken in July and January for 2D change detection. The 

image size is 5000×5000 pixels. As two images are taken in 

different seasons, the vegetation colour appears to be different in 

the two images. This may add difficulties in finding the real 

surface change within the image pair. 

 

The RGB Rapid eye image is firstly transformed into grey level 

image for pixel-wise dense matching. Then, a saliency map is 
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generated using the disparity maps produced from dense 

matching. The final change detection segmentation result is 

shown in Figure 9 with enlargement image of the changed target. 

In this experiment, the vegetation seasonal colour change will not 

be detected by the IICD software. This is because the vegetation 

seasonal change alters the global grey value change of the 

vegetation covered areas, and thus it can be regard as global 

illumination change within certain areas. As the proposed method 

is robust to both global and local illumination change, the 

seasonal vegetation colour change will not be a problem for the 

identification of real surface change. The comparison results 

using state-of-the-art methods and our method are demonstrated 

in Figure 10. 

 

As shown in Figure 10, filtering based CD methods perform 

better than differencing and normalisation based CD method in 

change detection, which means that the radiometric correction 

using homographic filter can partially remove the seasonal 

illumination effect, however, the average 𝐹1  of 0.1-0.4 is still 

unsatisfactory for effective change detection.  In contrast, the 

proposed IICD method is able to achieve 𝐹1 of 0.87 stating that 

the subtle change in mountainous area can be detected and 

extracted while suppressing the effect of long dark shadow effect 

and snow coverage variation. 

 

 

Figure 9 Change detection and results using the proposed IICD 

method. 

 

Figure 10 Comparison change detection accuracies using state-

of-the-art CD and our IICD methods for change detection 

 

5.3 Mars rover detection 

In this experiment, three HiRISE (High Resolution Imaging 

Science Experiment) images captured the Opportunity rover in 

different positions were used. The Opportunity rover is 2.3m 

wide and 1.6m long and in the 25cm resolution HiRISE images, 

the size of the rover is approximately 6×9 pixels. 

 

According to the observation statics provided by 

NASA/JPL/University of Arizona, the illumination conditions 

vary considerably in the three HiRISE images, with the largest 

azimuth angle difference of 56.1° between ESP_012820_1780 

and ESP_016644_1780, and the largest zenith angle difference 

of 8° between ESP_011765_1780 and ESP_016644_1780. 

 

The proposed IICD algorithm was applied then to the three image 

pairs. For illustration, the rover detection using the image pair of 

ESP_012820_1780 and ESP_016644_1780 is presented here in 

detail. The two images were taken under quite different 

illumination conditions and have large SNR difference. The final 

detection results locating the Opportunity Rover in different 

positions in the three image pairs are shown in Figure 11. The 

final rover positions estimated by this approach are marked with 

red circles. In the three cases, although under different 

illumination conditions, irregular geometric distortions and 

different SNR levels, the positions of the Opportunity Rover have 

been correctly detected. The experimental results demonstrate 

the effectiveness and robustness of the proposed subtle object 

change detection approach under substantial illumination 

variation and geometric distortion.  

 

The comparison results using state-of-the-art change detection 

methods and our method for Mars rover localization are 

demonstrated in Figure 12. As can be seen in Figure 12 that only 

the proposed IICD method is able to achieve high values both in 

precision and recall. 

 

 

Figure 11 Rover Detection results using three stereo pairs 

 

 
Figure 12 Comparison change detection accuracies using state-

of-the-art CD and our IICD methods for Mars rover change 

detection 

6. CONCLUSION 

In this paper, a PC based IICD (Local Illumination Invariant 

Change Detection) algorithm is proposed. It has been proven to 

be insensitive to illumination variation in a variety of difference 

situations. The pixel-wise co-registration using PC scanning is 

able to eliminate the geometric distortions between the images. 

Based on the illumination-insensitive property of PC, the 

disparity map and the 𝛿  peak map generated from PC based 
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image dense matching can be considered indicators for change in 

terms of change areas and change type. To overcome the blurring 

effect of window based method PC, a precise boundary 

identification algorithm is proposed based on a binary mask 

integration function. The final change detection map includes not 

only the precise change areas, but also the change type and 

motion. 

 

A comprehensive package of experiments using images of terrain 

models acquired under real illumination conditions, as well as 

satellite images of Mars, has been conducted to rigorously assess 

the capability of the algorithm. The experimental results 

demonstrate that the proposed PC based change detection 

approach is able to robustly detect real changes in object space 

regardless of illumination variation. Moreover, the proposed 

approach can also differentiate appearance change from object 

motion, and can correctly calculate the motion with sub-pixel 

accuracy. The proposed IICD algorithm the detection of subtle 

changes in short period and quantitative measurement from 

multi-temporal airborne and satellite imagery data, which is 

essential for fully exploit the big data information capacity.  

Future work will be carried out for automatically change object 

recognition by machine learning. For the study area, the database 

of multi-temporal EO images will firstly be trained through a 

classifier using machine learning algorithms. Based on the 

trained classifier, the change information detected from our PC 

based IICD algorithm will be automatically recognised and 

assigned to a more specific object type.  
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