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ABSTRACT: 

 

One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat 

images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods 

take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be 

constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to 

the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error 

to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. 

Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate 

for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity 

between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the 

above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational 

land imager (OLI) images of one test site. We assess the method’s performance by calculating the following accuracy metrics: 

Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the 

new method can improve target detection accuracy under complex and changeable environments. 

 

1. INTRODUCTION 

Terrestrial surface water bodies are among the most vital earth 

resources for human. However, they are vulnerable to global-

scale impacts from land use/cover changes (LUCC), climate 

changes, and other forms of environmental change in the world 

(Alderman et al., 2012; Huntington et al., 2006; Murray et al., 

2012; Sun et al., 2012; Vörösmarty et al., 2000). Changes in 

terrestrial surface water bodies may result in continuous but 

unexpected variations from socioeconomic development to 

ecological environment. Thus, comprehensive and accurate 

mapping of water bodies to describe its spatial and temporal 

distribution changes is of crucial importance for both academic 

research and related policy-making (Morss et al., 2005).  

 

With the rapid development of remote sensing technology, 

remote sensing has become an important source of information 

for data analysis and processing, especially in the surface water 

research. Satellite sensors with different spatial and temporal 

resolution have been successfully applied to analyze and monitor 

water bodies. Landsat satellites have been the most widely used 

optical sensors for surface water monitoring among various 

satellite sensors due to its noticeable data availability and short 

revisit interval (Cohen et al., 2004; Van Dijk et al., 2010).  

 

Many methods have been proposed to extract water bodies, 

which can be categorized into five basic categories: (a) spectral 

unmixing (De Asis et al. 2008; Rogers et al. 2004; Sethre et al., 

2005); (b) single-band thresholding (Jain et al. 2005; Klein et al.  

2014), which applies an optimized threshold to extract water 

from a single spectral band information and is frequently affected 
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by heterogeneous false signals (Verpoorter et al., 2012); (c) 

supervised or unsupervised classification (Lu et al., 2007; Otukei 

et al., 2010; Sun et al., 2014; Tulbure et al., 2013), which are the 

commonly used algorithms in remote sensing, such as the support 

vector machine (SVM) and the K-Means algorithm. The former 

heavily relies on a priori expertise to choose suitable training 

samples, while the latter is easily affected by environment noise; 

(d) water indexes (WIs) (McFeeters et al., 1996; Feyisa et al., 

2014; Xu, 2006), in which band math of two or more bands are 

used to enhance the discrepancy between water bodies and land 

surface features; (e) combinations of various methods (Jiang et 

al., 2012; Sheng et al., 2008; Sun et al., 2012; Verpoorter et al., 

2012; Yang et al., 2015), such as the modified fuzzy clustering 

method based on WIs (WIMFCM). 

 

Among the above methods, WIs are the most popular approach 

for water extraction (Fisher et al., 2013). They are designed to 

highlight the water pixels through enhancing the separability 

between water bodies and nonwater while suppressing 

environmental noise. Commonly effective and widely used WIs 

were listed in Table 1, based on the Landsat8 OLI imagery. 

 

The Normalized Difference Water Index (NDWI) proposed by 

McFeeters (1996) is one of the most used WIs (McFeeters et al.,  

1996). However, Xu (2006) found that it is difficult to 

discriminate built-up land from water pixels when using the 

NWDI. In order to overcome the deficiency, he formulated the 

modified normalized-difference water index (MNDWI) that 

improves the separability of water and urbanized area (Xu ,2006). 

The aforementioned WIs are usually inefficient in areas that 

include shadow and dark surfaces. Based on this issue, Feyisa 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1789-2018 | © Authors 2018. CC BY 4.0 License.

 
1789

mailto:wangxiaohang@gmail.com


Index Formula Reference 

NDWI (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅)/(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅) McFeeters 1996 

MNDWI (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1)/(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑆𝑊𝐼𝑅1) Xu 2005 

AWEInsh 4 × (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1) − (0.25 × 𝜌𝑁𝐼𝑅 + 2.75 × 𝜌𝑆𝑊𝐼𝑅2) Feyisa et al.2014 

AWEIsh 𝜌𝐵𝑙𝑢𝑒 + 2.5 × 𝜌𝐺𝑟𝑒𝑒𝑛 − 1.5 × (𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1) − 0.25 × 𝜌𝑆𝑊𝐼𝑅2 Feyisa et al.2014 

Table1. Common water indices used for the extraction of water features (𝜌: the reflectance value of spectral bands) 

 

 (2014) formulates a new method, called Automated water 

extraction index (AWEI) (Feyisa et al., 2014). 

 

Despite their excellent performance with respect to specific noise, 

WIs still remain many problems to be solved. For instance, when 

using WIs, water pixels with variable chemical and physical 

components may show a lower value than pure water pixels. The 

reason is that they only use partial spectral information to 

discriminate water bodies from other surfaces. In addition, the 

performance of WIs should be comprehensively tested prior to 

application which is rarely mentioned in the previous literature 

as far as we know (Campos et al., 2012). Secondly, WIs are 

generally intended for prescriptive conditions as mention above. 

Their performance therefore suffers from insufficiency in snow-

covered areas where land surface pixels with snow can also show 

a high value. The main reason is that they have not taken the 

background information into consideration (Ji et al., 2015). 

 

SVM can use all of the bands information to extract water bodies, 

but it relies on a priori expertise and discards the spatial 

correlation, which may be sensitive to noise in different 

environment. Conditional random field (CRF) has the intrinsic 

ability to incorporate contextual information in both the labels 

and the observed data. Meanwhile, the arbitrary function of 

observed features can be incorporated into their training process 

(Cao et al., 2016). Focuses on improving accuracy and robustness, 

reducing useless spectrum information, we develop a systematic 

water extraction method named SVM-WI guided stochastic 

fully-connected CRF (SVM-WIGSFCRF) method. 

 

2. METHODOLOGY 

In this section, the overall workflow is divided into five main 

parts (Figure 1): (1) data collection; (2) image pre-processing, 

including radiometric calibration, atmospheric correction and 

image cropping; (3) water extraction by the related methods; (4) 

SFCRC segmentation, using the preliminary probabilistic graph 

of SVM and the generated images by WIs to get an ideal 

classification result; (5) result analysis. 

 

2.1 Study area and feature extraction 

In order to test the proposed method of this study, the Landsat 8 

OLI images are acquired from the United States Geological 

Survey (USGS) portal (http://earthexplorer.usgs.gov/). The study 

area information is shown in the Figure 2.  

 

Radiometric calibration and atmospheric correction of the 

 

satellite imagery are prerequisite for generating consistent and 

high-quality image materials (Chander et al., 2009). WIs are used 

to generate new gray images and we choose the best result of 

them as the basic gray image data for the SFCRF model to 

segment and infer. In addition, gray values of the WI image are 

linearly normalized into [0, 1]. 

  

2.2 Stochastic fully-connected conditional random field 

The conventional CRF considering local spatial information 

along with spectral information has a proven capability to 

classify Landsat images, therefore, CRFs have been widely used 

in the remote sensing (Salmon et al., 2015; Li et al., 2015; Xu et 

al., 2017). The fully-connected CRF (FCRF) addresses the 

correlation effect in the global image scale is better than the 

conventional CRF that considers the correlation effect in a local 

area (Krähenbühl et al., 2011).  

 

The stochastic FCRF (SFCRF) model is proposed to maintain the 

advantage of FCRF but reduce its computational cost by using a 

stochastic clique approach (Shafiee et al., 2014; Xu et al., 2015; 

Xu et al., 2016). SVM-WIGSFCRF is a mixed model, where 

probabilistic graph generated by SVM and WI are used as the 

guide to extract water bodies, while the stochastic clique is used 

to determine the connectivity among nodes in a fully-connected 

graph. 

 

We assume that x𝑖  and y𝑖 denote respectively the pixel value and 

the class label of a site in the WIs image. 𝑁 is the total number of 

pixels in the image. The Landsat OLI image can be expressed as 

𝑋 = {𝑥𝑖|𝑖 = 1,2, ⋯ , 𝑁} and 𝑌 = {𝑦𝑖|𝑖 = 1,2, ⋯ , 𝑁}. Thus, water 

bodies extraction aims to infer 𝑌  given 𝑋  by maximizing the 

following conditional probability distribution: 

 

𝑃(𝑌|𝑋) =
1

𝑍(𝑋)
𝑒𝑥𝑝{− ∑ 𝜓𝑢𝑖 (𝑦𝑖 , 𝑋) − ∑ 𝜓𝑝(𝑖,𝑗)∈𝐶 (𝑦𝑖 , 𝑦𝑗 , 𝑋)} (1) 

 

where the function  𝑍(𝑋)  is the partition function in order to 

ensure that the distribution sums to unity. The unary potential 
∑ 𝜓𝑢𝑖 (𝑦𝑖 , 𝑋) as a posterior probability of the class labels given 

the observation data, disregarding the interaction between itself 

and other pixels in the image. The ∑ 𝜓𝑝(𝑖,𝑗)∈𝐶 (𝑦𝑖 , 𝑦𝑗 , 𝑋) usually 

named as the pairwise potential, which means the relationship 

between current observed data, its neighboring observed data and 

their corresponding labels. In addition, C is defined as the set of 

clique structure in the random field which determines the 

connectivity among nodes in the neighborhood.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1789-2018 | © Authors 2018. CC BY 4.0 License.

 
1790



 

Figure 1. Flowchart of SVM-WIGSFCRF algorithm for water extraction 

 

 

Figure 2. Study area: Donggei Cuona Lake (Path/ROW 134/35 2016/12/11) 

 

2.3 Unary potential 

The unary potential ∑ 𝜓𝑢𝑖 (𝑦𝑖 , 𝑋) is usually computed using a 

discriminative classifier to infer the initial probabilistic graph of 

the image (Cao et al., 2016; Salmon et al., 2015; Wang et al., 

2016). The unary potential function is formulated as below: 

 

 𝜓𝑢(𝑦𝑖 , 𝑋) =  −𝑙𝑜𝑔 (𝑝(𝑦𝑖|𝑥𝑖) (2) 

 

where 𝑝(𝑦𝑖|𝑥𝑖) is the posterior probability of 𝑦𝑖 given 𝑥𝑖 based 

on the library for SVM (LIBSVM). In order to test the 

practicability of the proposed method and reduce the processing 

time of SVM, a small number of samples are chosen. Water 

pixels (1656) and other land surface pixels (2173) are chosen as 

the train data. 
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Figure 3. Water extraction results achieved by different methods. Traditional WI methods are sensitive to ice/snow lead to a lower 

accuracy than other methods. SVM performs better than WIs, but is still affected by ice/snow and yields many false alarms. SVM-

WIGCRF achieve the best result and produces a clean background.

 

Method CE (%) OE (%) KP (%) TE (%) 

NDWI 27.39 0.21 81.26 27.60 

MNDWI 40.76 0.11 68.68 40.87 

AWEInsh 24.97 0.14 83.28 25.11 

SVM 0.25 4.55 97.38 4.80 

SVM-WIGSCRF 1.30 1.90 98.21 3.20 

Table 2. Summary of accuracies for the proposed method over the study area 

 

2.4 Pairwise potential   

To incorporate the spatial information, the pairwise potential can 

be expressed as follows: 

 

 𝜓𝑝(𝑦𝑖 , 𝑦𝑗 , 𝑋) = −𝜆 ∙ 𝜇(𝑦𝑖 , 𝑦𝑗) ∙ 𝑃𝑖𝑗 (3) 

 

where 𝜇(𝑦𝑖 , 𝑦𝑗) is implemented according to the Potts model and 

𝜆 is a trade-off coefficient between the two potential terms. As we 

method before in (1), 𝑖 and 𝑗 must be included in the clique 𝐶. 

Accordingly, the widely used pairwise clique structure is adopted 

here: 

 

 𝐶 = {𝐶(𝑖)} (4) 
 𝐶(𝑖) = {(𝑖, 𝑗)|𝑗𝜖𝑁𝑖 , 𝐼(𝑖, 𝑗) = 1} (5) 
 

𝑁𝑖  usually represents the whole neighborhood of node 𝑖 in the 

FCCRF model, which is expressed as below: 

 

 𝑁𝑖 = {𝑗|𝑗 = 1: 𝑁, 𝑗 ≠ 𝑖} (6) 
 

𝐼(𝑖𝐽𝑗)  is a clique indicator function determining whether two 

nodes can be connected, according to a stochastic measure: 

 

 𝐼(𝑖𝐽𝑗) = {
1  𝑖𝑓 𝛾 ∙ 𝑃𝑖𝑗𝑄𝑖𝑗 ≥ 𝜑

0         𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑤𝑠𝑒.
 (7) 

 

Symbol 𝑃𝑖𝑗  and 𝑄𝑖𝑗  denote respectively the data similarity 

likelihood and the probabilistic spatial closeness measurement. 

The data similarity likelihood 𝑃𝑖𝑗 is expressed as (Deledalle et al., 

2009): 

 

 𝑃𝑖𝑗 = 4𝐿 (
𝑎𝑖𝑎𝑗

𝑎𝑖
2+𝑎𝑗

2) (8) 

 

Where 𝐿  reveals the complexity of the image. The amplitude 

values are expressed by 𝑎𝑖 = √𝑥𝑖  and 𝑎𝑗 = √𝑥𝑗 .The 

probabilistic spatial closeness measurement between pixel and is 

defined as below: 

 

 𝑄𝑖𝑗 = 𝑒𝑥𝑝 (−
(𝐿𝑖𝑟−𝐿𝑖𝑗)

2
+(𝐿𝑖𝑐−𝐿𝑖𝑐)2

2𝜎2 ) (9) 

 

where 𝐿𝑖𝑟 and 𝐿𝑖𝑗 are respectively the row and column locations 

of site 𝑖 in image space, and 𝜎 determines the spatial scale. Based 

on the Potts model, 𝜇(𝑦𝑖 , 𝑦𝑗) in (3) can be expressed as follows: 

 

 𝜇(𝑦𝑖 , 𝑦𝑗) = {
1       𝑦𝑖 ≠  𝑦𝑗 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (10) 

 

In summary, the binary classification of OLI image is achieved 

by using the above described unary and pairwise potentials. 

Water bodies is successfully extracted from land surfaces 

according to the maximum a posterior (MAP), such that 

 

 𝑌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
�̂�

𝑃(𝑌|𝑋) (11) 

 

where 𝑌∗ is the best label configuration in the set 𝑌  that 

maximizes 𝑃(𝑌|𝑋) . In order to find 𝑌∗, the energy 

function  ∑ 𝜓𝑢𝑖 (𝑦𝑖 , 𝑋) + ∑ 𝜓𝑝(𝑖,𝑗)∈𝐶 (𝑦𝑖 , 𝑦𝑗 , 𝑋) of (1) is 

minimized by graph-cut approach (Kohli et al., 2007). 
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2.5 Experiment results 

For this study, the “true” water bodies are refined by means of 

associated high-resolution Google Earth™ imagery. Ground 

truth, and experiment results with the different methods are 

shown in Figure 3. The results regarding the numerical evaluation 

were reported in Table 2. We choose the 0 as the threshold value 

of WIs. We can find that WIs may have a higher error than other 

methods, when they choose the 0-theoretical threshold. Therefore, 

we must change threshold value varying with the environment. 

SVM and SVM-WIGCRF can be adapted in a complicated 

environment and the latter have the better accuracy. As we can 

see from the Table2, SVM-WIGCRF obtains the best result in 

three indices, which illustrates the effectiveness and stability of 

the proposed model. 

 

3. CONCLUSIONS 

In this paper, we presented a SVM-WIGSFCRF algorithm for the 

purpose of water extraction. The proposed method comparing the 

traditional methods is more capable of modelling large-scale 

spatial correlation effect by the use of stochastic clique approach, 

and thereby is more tailored to the changeable water environment. 

The experiments conducted on the large-scale image demonstrate 

that SVM-WIGSFCRF can better delineate water bodies, without 

being significantly affected by background and target 

heterogeneities. Further experiments in different regions and 

seasons are still necessary to enhance the robustness of the 

method given the high diversity of water bodies globally. 

 

ACKNOWLEDGEMENTS 

This work was supported by the National Natural Science 

Foundation of China Grant 41501410. 

 

REFERENCES 

Alderman, K., Turner, L. R., & Tong, S. (2012). Floods and 

human health: a systematic review. Environment 

international, 47, 37-47. 

 

Campos, J. C., Sillero, N., & Brito, J. C. (2012). Normalized 

difference water indexes have dissimilar performances in 

detecting seasonal and permanent water in the Sahara–Sahel 

transition zone. Journal of Hydrology, 464, 438-446. 

 

Cao, G., Zhou, L., & Li, Y. (2016). A new change-detection 

method in high-resolution remote sensing images based on a 

conditional random field model. International Journal of Remote 

Sensing, 37(5), 1173-1189. 

 

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary 

of current radiometric calibration coefficients for Landsat MSS, 

TM, ETM+, and EO-1 ALI sensors. Remote sensing of 

environment, 113(5), 893-903. 

 

Cohen, W. B., & Goward, S. N. (2004). Landsat's role in 

ecological applications of remote sensing. AIBS Bulletin, 54(6), 

535-545. 

 

De Asis, A. M., Omasa, K., Oki, K., & Shimizu, Y. (2008). 

Accuracy and applicability of linear spectral unmixing in 

delineating potential erosion areas in tropical 

watersheds. International Journal of Remote Sensing, 29(14), 

4151-4171. 

 

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). 

Automated Water Extraction Index: A new technique for surface 

water mapping using Landsat imagery. Remote Sensing of 

Environment, 140, 23-35. 

 

Fisher, A., & Danaher, T. (2013). A water index for SPOT5 HRG 

satellite imagery, New South Wales, Australia, determined by 

linear discriminant analysis. Remote Sensing, 5(11), 5907-5925. 

 

Huntington, T. G. (2006). Evidence for intensification of the 

global water cycle: review and synthesis. Journal of 

Hydrology, 319(1), 83-95. 

 

Jain, S. K., Singh, R. D., Jain, M. K., & Lohani, A. K. (2005). 

Delineation of flood-prone areas using remote sensing 

techniques. Water Resources Management, 19(4), 333-347. 

 

Ji L, Geng X, Sun K, et al. Target detection method for water 

mapping using Landsat 8 OLI/TIRS imagery[J]. Water, 2015, 

7(2): 794-817. 

 

Jiang, Z., Qi, J., Su, S., Zhang, Z., & Wu, J. (2012). Water body 

delineation using index composition and HIS 

transformation. International journal of remote sensing, 33(11), 

3402-3421. 

 

Klein, I., Dietz, A. J., Gessner, U., Galayeva, A., Myrzakhmetov, 

A., & Kuenzer, C. (2014). Evaluation of seasonal water body 

extents in Central Asia over the past 27 years derived from 

medium-resolution remote sensing data. International Journal of 

Applied Earth Observation and Geoinformation, 26, 335-349. 

 

Kohli, P., & Torr, P. H. (2007). Dynamic graph cuts for efficient 

inference in markov random fields. IEEE transactions on pattern 

analysis and machine intelligence, 29(12), 2079-2088. 

 

Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully 

connected crfs with gaussian edge potentials. In Advances in 

neural information processing systems (pp. 109-117). 

 

Li, F., Xu, L., Siva, P., Wong, A., & Clausi, D. A. (2015). 

Hyperspectral image classification with limited labeled training 

samples using enhanced ensemble learning and conditional 

random fields. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 8(6), 2427-2438. 

 

Lu, D., & Weng, Q. (2007). A survey of image classification 

methods and techniques for improving classification 

performance. International journal of Remote sensing, 28(5), 

823-870. 

 

Morss, R. E., Wilhelmi, O. V., Downton, M. W., & Gruntfest, E. 

(2005). Flood risk, uncertainty, and scientific information for 

decision making: lessons from an interdisciplinary 

project. Bulletin of the American Meteorological Society, 86(11), 

1593-1601. 

 

McFeeters, S. K. (1996). The use of the Normalized Difference 

Water Index (NDWI) in the delineation of open water 

features. International journal of remote sensing, 17(7), 1425-

1432. 

 

Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M., & 

Fuller, R. A. (2012). Continental scale mapping of tidal flats 

across East Asia using the Landsat archive. Remote 

Sensing, 4(11), 3417-3426. 

 

Otukei, J. R., & Blaschke, T. (2010). Land cover change 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1789-2018 | © Authors 2018. CC BY 4.0 License.

 
1793



assessment using decision trees, support vector machines and 

maximum likelihood classification algorithms. International 

Journal of Applied Earth Observation and Geoinformation, 12, 

S27-S31. 

 

Rogers, A. S., & Kearney, M. S. (2004). Reducing signature 

variability in unmixing coastal marsh Thematic Mapper scenes 

using spectral indices. International Journal of Remote 

Sensing, 25(12), 2317-2335. 

 

Salmon, B. P., Kleynhans, W., Olivier, J. C., Schwegmann, C. P., 

& Olding, W. C. (2015, July). A multi-tier higher order 

conditional random field for land cover classification of multi-

temporal multi-spectral landsat imagery. In Geoscience and 

Remote Sensing Symposium (IGARSS), 2015 IEEE 

International (pp. 4372-4375). IEEE. 

 

Sethre, P. R., Rundquist, B. C., & Todhunter, P. E. (2005). 

Remote detection of prairie pothole ponds in the Devils Lake 

Basin, North Dakota. GIScience & Remote Sensing, 42(4), 277-

296. 

 

Shafiee, M. J., Wong, A., Siva, P., & Fieguth, P. (2014, October). 

Efficient bayesian inference using fully connected conditional 

random fields with stochastic cliques. In Image Processing 

(ICIP), 2014 IEEE International Conference on (pp. 4289-4293). 

IEEE. 

 

Sheng, Y., Shah, C. A., & Smith, L. C. (2008). Automated image 

registration for hydrologic change detection in the lake-rich 

Arctic. IEEE geoscience and remote sensing letters, 5(3), 414-

418. 

 

Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and 

improvement of methods for identifying waterbodies in remotely 

sensed imagery. International journal of remote sensing, 33(21), 

6854-6875. 

 

Sun, F., Zhao, Y., Gong, P., Ma, R., & Dai, Y. (2014). 

Monitoring dynamic changes of global land cover types: 

fluctuations of major lakes in China every 8 days during 2000–

2010. Chinese Science Bulletin, 59(2), 171-189. 

 

Tulbure, M. G., & Broich, M. (2013). Spatiotemporal dynamic of 

surface water bodies using Landsat time-series data from 1999 to 

2011. ISPRS Journal of Photogrammetry and Remote 

Sensing, 79, 44-52. 

 

Van Dijk, A. I. J. M., & Renzullo, L. J. (2011). Water resource 

monitoring systems and the role of satellite 

observations. Hydrology and Earth System Sciences, 15(1), 39. 

 

Verpoorter, C., Kutser, T., & Tranvik, L. (2012). Automated 

mapping of water bodies using Landsat multispectral 

data. Limnology and Oceanography: Methods, 10(12), 1037-

1050. 

 

Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. 

(2000). Global water resources: vulnerability from climate 

change and population growth. science, 289(5477), 284-288. 

 

Wang, H., Wang, C., & Wu, H. (2016). Using GF-2 imagery and 

the conditional random field model for urban forest cover 

mapping. Remote Sensing Letters, 7(4), 378-387. 

 

Xu, H. (2006). Modification of normalised difference water 

index (NDWI) to enhance open water features in remotely sensed 

imagery. International journal of remote sensing, 27(14), 3025-

3033. 

 

Xu, L., Javad Shafiee, M., Wong, A., Li, F., Wang, L., & Clausi, 

D. (2015). Oil spill candidate detection from SAR imagery using 

a thresholding-guided stochastic fully-connected conditional 

random field model. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition Workshops (pp. 79-

86). 

 

Xu, L., Shafiee, M. J., Wong, A., & Clausi, D. A. (2016). Fully 

Connected Continuous Conditional Random Field With 

Stochastic Cliques for Dark-Spot Detection In SAR 

Imagery. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 9(7), 2882-2890. 

 

Xu, L., Clausi, D. A., Li, F., & Wong, A. (2017). Weakly 

Supervised Classification of Remotely Sensed Imagery Using 

Label Constraint and Edge Penalty. IEEE Transactions on 

Geoscience and Remote Sensing, 55(3), 1424-1436. 

 

Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., & 

Duan, Y. (2015). Landsat 8 OLI image based terrestrial water 

extraction from heterogeneous backgrounds using a reflectance 

homogenization approach. Remote Sensing of Environment, 171, 

14-32. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1789-2018 | © Authors 2018. CC BY 4.0 License.

 
1794




