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ABSTRACT: 

 

Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global 

climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in 

different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. 

The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5℃

~15℃ and the annual total precipitation is higher than 200mm. These results can provide a basis for future estimation of GPP 

research. 

 

*  Corresponding author 

 

1. INTRODUCTION 

Gross primary productivity (GPP) is the total biomass from 

sunlight energy to chemical energy through photosynthesis of 

plants. On the ecosystem scale, a spatially and temporally clear 

estimate of GPP can provide important information about when, 

where and how much carbon dioxide is absorbed in the land 

carbon budget (Parazoo et al. 2014;Zhang et al. 2014). 

Estimating GPP are usually based on models and algorithms 

with ground observation and remote sensing data sets(Heinsch 

et al. 2006). However, previous estimation methods have 

seldom been related to plant photosynthetic functioning.  

 

Solar-induced chlorophyll fluorescence (SIF) is an 

electromagnetic signal emitted by vegetation chlorophyll in red 

and near-infrared regions in response to the absorption of 

photosynthetically active radiation. The two emission peaks of 

SIF is 685-690 nm and 730-740 nm, respectively(Sun et al. 

2017). With the development of spectroscopy, we can obtain 

the space-based monitoring of SIF that makes possible to 

realize rapid and global estimation of GPP. Recently, a number 

of studies have shown that remote measurement of SIF can 

estimate GPP well at the largely scale (Damm et al. 

2010;Frankenberg et al. 2011b;Joiner et al. 2012). 

 

It should be noted that the SIF-GPP relationship is not suitable 

for all conditions (Frankenberg et al. 2011a), however, few 

people take integratedly environmental factors into account to 

estimate GPP with SIF. In this study, our primary goal is to 

find the best environmental conditions of estimating GPP with 

satellite-level SIF in China.     

 

2. DATA AND ANALYSIS 

2.1 GOME-2 SIF 

This study used v2.7 level3 global-scale grid averaged (0.5°×
0.5°) SIF retrieve dataset from the Global Ozone Monitoring 

Instrument – 2 (GOME-2), which taken from the Aura 

Validation Data Centre (AVDC) data archive 

(avdc.gsfc.nasa.gov)(Joiner et al. 2014). GOME-2 SIF 

retrievals are derived from the filling-in of solar Fraunhofer 

lines in the vicinity of the 740 nm far-red chlorophyll 

fluorescence emission peak (Joiner et al. 2013). In this study, 

we used monthly data covers the 2007 – 2013 time period to 

analyse the relationship between SIF and GPP.  

 

2.2 MPI GPP 

Monthly GPP estimates is used at 0.5° scale from the Max 

Planck Institute (MPI) for Biogeochemistry(www.bgc-

jena.mpg.de/geodb/projects/Data.php)(Jung et al. 2011).The 

MPI GPP product is a statistical data driven model, which 

simulated ecosystem-level GPP relatively well documented by 

many articles. The MPI GPP data set used in this study covers 

the 2007 – 2013 time period. 

 

2.3 Temperature 

WorldClim v2 average monthly temperature data is used from 

1970 – 2000 (worldclim.org)(Fick and Hijmans 2017), and we 

averaged monthly data to get the annual average temperature 

data. The spatial resolution of temperature data is resampled to 

0.5° grid with the nearest neighbour method in matlab. We 

divide the annual average temperature into four levels (<-5℃, -

5℃~5℃ , 5℃~15℃ , >15℃ ) to analyse the influence of 

temperature on GPP estimation. 

 

2.4 Precipitation 

Precipitation data is ESRL PSD Long term monthly means 

V4.01 global gridded data (0.5°×0.5°) from 1981 - 2010 from 

esrl.noaa.gov(Willmott and Matsuura 2001), and we totalled 

monthly data to get the annual total precipitation data. We 

divide the annual total precipitation into four levels according 
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to criteria for the division of dry and wet areas in China, that 

are <200mm, 200mm~400mm, 400mm~800mm, >800mm.  

 

2.5 Analysis 

The study area was identified as China, so the above data is 

only selected in China and processed in matlab. SIF and 

corresponding GPP monthly data (n=84) are taken out 

depending on the four temperature grades respectively. Then 

simple linear regression analysis was performed on above four 

sets of data in matlab, and we could obtain determination 

coefficient (R2) to show the relationship between SIF and GPP. 

The same operation had been done in the annual total 

precipitation data set.  

 

3. RESULTS AND DISCUSSION 

The results (Figure 1) showed that R2 > 0.6, when the annual 

average temperature ranges from -5℃ to 15℃, the best linear 

fit is the temperature range of -5℃~5℃ (R2=0.77). The lowest 

R2 is when the annual average temperature is lower than -5℃ 

(R2=0.40), it might be because the temperature is so cold that 

vegetation is extremely sparse. When we thought R2 is greater 

than 0.6, it indicated that SIF is optimal for GPP estimation. 

Therefore, we could believe that SIF is a good indicator for 

GPP, when the average annual temperature is at -5℃~15℃. 

 

 

Figure 1. The relationship between SIF and GPP is analysed in 

four levels of annual average temperature used simple linear 

regression analysis. 

 

As shown in Figure 2 implicated that R2 > 0.6, when the 

annual total precipitation ranges higher than 200mm, the best 

linear fit is the precipitation range of 400mm~800mm 

(R2=0.77). The lowest R2 is when the annual total precipitation 

is lower than 200mm (R2=0.17), it was possible that the 

precipitation is so rare that vegetation is extremely sparse. If 

we thought R2 is greater than 0.6, it indicated that SIF is 

optimal for GPP estimation. Hence, we could believe that SIF 

is a good indicator for GPP, when the average annual 

precipitation is higher than 200mm. 

 

 

Figure 2. The relationship between SIF and GPP is analysed in 

four levels of annual total precipitation used simple linear 

regression analysis. 

 

From the above, we could safely conclude that we can estimate 

global GPP using the SIF dataset, when the annual average 

temperature in the range of -5℃~15℃, meanwhile, the annual 

total precipitation in the range higher than 200mm. 

 

4. CONCLUSION 

In this study, we analysed the relationship between SIF and 

GPP in different levels of annual average temperature and 

annual total precipitation respectively. We concluded that SIF 

is the optimal method to estimate GPP, when the annual 

average temperature in the range of -5℃~15℃ and the annual 

total precipitation in the range higher than 200mm. 

 

With the development of the spectroscopy sensor, we will get 

more and more subtle spatial resolution, i.e. FLEX, so that we 

can get more accurate conclusions. 
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