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ABSTRACT: 
 

The Factor analysis and target transformation (FATT) is an effective method to test for the presence of particular mineral on Martian 

surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES) and near-infrared (Compact Reconnaissance 

Imaging Spectrometer for Mars, CRISM) hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and 

typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels 

will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT 

method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC) algorithm was used to partition the 

CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their 

proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, 

the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and 

otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our 

experimental results indicate that the proposed method work well both in simulated and real data sets. 

 

 

1. INTRODUCTION 

A record of the evolution of Mars is preserved in the rocks and 

sediments exposed at its surface. Minerals can fingerprint many 

processes that build the Martian rock record(Ehlmann et al., 

2014). Spectroscopy allows for the analysis of surface minerals 

via remote sensing observations(Thomas et al., 2017). As 

Compact Reconnaissance Imaging Spectrometer for Mars 

(CRISM) had been sent to Mars, a huge quantity of data is getting 

available for research, which provide an improved understanding 

of Martian mineralogy. However, due to insufficient spatial 

resolution and spatial complexity, pixels in images are likely to 

be a mixture of pure spectral constituents rather than a single 

substance(Bioucas-Dias et al., 2012). Besides, owing to the 

instrumental or observational biases, which further complicate 

the extraction of interesting but subtle spectral features (such as 

hydrated silicates)(Carter et al., 2013). 

 

There are many efforts have been made to identify minerals based 

on CRISM data. Spectral parameters provide an analysis tool for 

rapid assessment of the vast amounts of data(Pelkey et al., 2007, 

Viviano-Beck et al., 2014), which are widely used to identify a 

diverse range of minerals on Martian surface(Ehlmann et al., 

2008, Mustard et al., 2008, Ehlmann et al., 2009). However, a 

spectral parameter may account for multiple minerals (For 

example, D2300 represents Fe/Mg phyllosilicates(Viviano-Beck 

et al., 2014)), it’s still difficult to identify the unambiguous 

mineral. The Factor analysis and target transformation (FATT) is 

an effective method to test for the presence of particular mineral 

on Martian surface. It has been used both in thermal 

infrared(Thermal Emission Spectrometer, TES)(Bandfield et al., 

2000) and near infrared(CRISM)(Thomas et al., 2017) 

hyperspectral data. Factor analysis derived a set of orthogonal 

eigenvectors from a mixed system and typically selected first 10 

eigenvectors to least square fit the library mineral spectra. If the 

trial spectrum fits well, this spectrum is a component of the 

system and a possible spectral endmember(Bandfield et al., 2000). 

However, there are some challenges in FATT. First of all, when 

an image is analysed using factor analysis, higher order 

eigenvectors (corresponding to noise in statistics) will be 

discarded. Thus, minerals present only in limited pixels might be 

ignored because of its weak spectral features compared with full 

image signatures. There is no systematic discussion on the effect 

of different number of eigenvectors on fitting accuracy. 

Furthermore, FATT can only tell the presence of specific mineral, 

but can’t give the potential locations. 

 

The purpose of this paper is to address the above problems. We 

first analysed the performance of different number of selected 

eigenvectors upon different signal to noise ratio (SNR) data. 

Besides, we proposed a novel superpixel based target 

transformation method for Martian minerals detection. The rest 

of this paper is organized as follows. Section 2 presents the 

proposed method. Section 3 and section 4 describe our 

experimental results with simulated datasets and CRISM data, 

respectively. The conclusions are drawn in section 5. 

 

2. METHOD 

There are two steps in FATT. First, R-mode factor analysis 

derives a set of orthogonal eigenvectors from mixed spectral data, 

and associated eigenvalues indicate the relative importance of the 

eigenvectors. Geminale et al. (2015) used Principal Component 

Analysis (PCA) to obtain eigenvectors. In this work, the 

eigenvalues and eigenvectors of covariance matrix of the mean-

removed spectral data was calculated. Second, a linear least 

squares (lsq) fitting of the eigenvectors onto a test mineral 

spectrum is performed to determine whether it is one of the 

endmember in the scene. Then we analysed the fitting residuals 

as a function of the number of eigenvectors in different noise 
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level corrupted data. Next, we utilized a state-of-art superpixel 

algorithm called Simple Linear Iterative Clustering 

(SLIC)(Achanta et al., 2012) to partition the image into multiple 

spectral homogeneous connected image regions, this process can 

highlights weak signatures in a small region by elevating their 

pixels’ ratio. There are two main parameters affect the results. 

One is (approximate) number of output segment, the other is 

compactness, which balances spectral proximity and space 

proximity, higher value give more weight to space proximity, and 

vice versa. We compared the fitting results of different segment 

parameter settings. Finally, we validate our method by 

identifying carbonates in a well analysed CRISM image in Nili 

Fossae on Mars. 

 

3. EXPERIMENTS WITH SIMULATED DATA 

In this section, we illustrate the fitting performance of the 

proposed method using two simulated hyperspectral data sets. 

Data sets 1 are used to study the fitting results of different 

numbers of eigenvectors upon different signal to noise ratio 

(SNR) data. Data sets 2 are used to study the performance of our 

proposed superpixel based target transformation method. For 

quantitative analysis, the root mean square error (rmse) is used to 

evaluate the fitting accuracy. Let y be the true spectrum with n 

bands, 
1y  be the model spectrum, rmes can be computed as 

follows: 

 

( )
n 2

1i 1
rmse= y y n            (1) 

 

 

3.1 Simulated Data Sets 1 

The spectral data we used in this experiment is provided by 

CRISM spectral library, where 4 endmember signatures are used 

to generate an 8×8 pixels synthetic data, including Hematite 

BKR1JB041, Clinopyroxene C1XP20, Orthopyroxene CBSB52, 

Olivine C1OL01. The endmembers cover the wavelength range 

of 1.03~2.60μm with 238 bands. In each pixel, the fractional 

abundances of the endmembers follow a dirichlet distribution and 

abundance nonnegativity constraint (ANC) and sum-to-one 

constraint (ASC). We generated the data according to the linear 

mixing model(Bioucas-Dias et al., 2012). Then we randomly 

implanted a serpentine spectrum LASR06 into the pixel as (2): 

 

( )serpR f ref 1 f ref          (2) 

 

where serpref is reflectance of serpentine, ref  is reflectance 

of original mixed pixel, f  represents abundance, and 

0 f 1 . The obtained data was then contaminated with i.i.d. 

Gaussian noise, for four levels of SNR: 20, 30, 40, 50dB. 

 

Simulated Data Cube 1 (DC1): We randomly chose 10 pixels to 

insert serpentine spectrum, and the serpentine abundance is 10% 

in each pixel. Fig. 1 shows that rmse decreases rapidly as the 

number of eigenvectors K increase to 4 when SNR larger than 

20dB, then decreases slowly. That’s because the data is mainly 

mixed by 4 endmembers. Intuitively, fitting residuals decrease by 

an order of magnitude when SNR increase from 20dB to 30dB. 

 

Simulated Data Cube 2 (DC2): We randomly chose 1 pixel to 

insert serpentine spectrum, and the serpentine abundance is 100%. 

From Fig. 2, we can get a conclusion similar to Fig.1. Besides, 

the rmse of DC2 decrease by an order of magnitude when 

compared with DC1. Fig. 3 shows the spectrum fitting with first 

4 eigenvectors of DC1 and DC2 when SNR is 30dB. From the 

above two experiments, we can draw conclusions: 1) The number 

of eigenvectors K can be determined according to intrinsic 

dimension of data when data quality is good. 2) Although the 

total abundance of serpentine is the same as DC1, rmse of DC2 

is much lower than DC1, this suggests that the limited high 

abundance target pixel is insensitivity to noise and easier 

identified than distributed more widely but with low abundance 

pixel. 

 

 
Figure 1. Plot of root mean square error of simulated data cube 

1 as a function of the number of eigenvectors. 

 

 
Figure 2. Plot of root mean square error of simulated data cube 

2 as a function of the number of eigenvectors in 30dB. 

 

3.2 Simulated Data Sets 2 

The spectral data we used in this experiment is provided by the 

USGS spectral library, where 15 endmember signatures are used. 

The above 15 spectra are collected in 224 bands uniformly 

spanning from 0.4 to 2.5 µm. Simulated data 2 with 6464 pixels 

was generated as(Zou et al., 2015), and then corrupted by a 

Gaussian white noise with 30dB SNR. In this experiment, 

Labradorite HS17.3B is used as the target spectrum. Fig. 4(a) 

shows the first band of simulated data 2 and Fig. 4(b) shows the 

groundtruth. 
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a

b

 

Figure 3. Spectrum reconstruction with first 4 eigenvectors of 

DC1(a) and DC2(b). Both data cube are contaminated with 

30dB Gaussian noise. 

 

 
(a)                      (b) 

Figure 4. (a) First band of simulated data 2, (b) Groundtruth of 

targets. 

 

We set a series of initial number of segments 20, 50, 80, 100, 150, 

250, 300 to run SLIC algorithm, the results are shown in Fig. 5. 

We conducted experiments to analyse the effects of image 

segmentation on detection performance. We manually set K 

equals 6 in each segmentation result. Target transformation was 

then performed to each region iteratively. For better illustration, 

we used the reciprocal of rmse to display the final detection 

results. The smaller the rmse, the larger its reciprocal, and the 

more likely it’s to be a target. Finally, we set a threshold to 

determine target pixels. Fig. 6 shows detection maps in different 

segmentation results. The target pixels are shown in white. From 

a qualitative point of view, our method reaches its best detection 

performance at Fig. 6(g).

 

 
Figure 5. Superpixel segmentation results by SLIC with different input parameter (segments), the titles show the actual number of 

segments in each figure, the boundaries are represented by red lines. 
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(a)                          (b)                          (c)                          (d) 

 

(e)                         (f)                          (g)                          (h) 

Figure 6. Detection maps of the simulated data 2 (with gaussian white noise 30dB SNR) in different segmentation results 

corresponding to Fig. 5. 

 

 

The receiver-operating-characteristic (ROC) curve is employed 

to quantitatively evaluate the detection ability. ROC curve used 

a detection probability dP  and a false alarm rate fP  to 

provide an unbiased, quantitative, and threshold-free 

performance comparison. dP  and fP  are defined as: 

 

d
d

t

N
P

N
                (3) 

 

miss
f

all

N
P

N
               (4) 

 

where dN  represents the number of detected target pixels at a 

certain threshold, tN  represents the number of target pixels in 

the image, missN  represents the number of background pixels 

mistaken as targets, and allN  represents all the pixels in the 

image. 

 

A good detection ROC curve should lie near to the top left. Fig. 

7 shows the ROC curves of the detection results of above 

segmentation schemes, the curves prove that segment 7 is best, 

which is consistent with the conclusion in Fig.6. 

 
Figure 7 The ROC curves of our method with different 

segmentation results. 

 

4. EXPERIMENTS WITH REAL DATA 

Carbonates are key minerals for understanding ancient Martian 

environments because they are indicators of potentially habitable, 

and may be an important reservoir for paleoatmospheric 

CO2(Wray et al., 2016). We conducted an experiment to identify 

carbonate (magnesite) in a well studyed CRISM FRT00003e12 

to validate our method.  

 

CRISM is a VNIR imaging spectrometer onboard the Mars 

Reconnaissance Orbiter (MRO) that covers the wavelength range 

of 0.36~3.94μm. In this work, we used one targeted mode 

observation frt00003e12, which has a full spatial resolution (FRT) 

of 18 m/pixel(Murchie et al., 2007), and selected a range of 133 

spectral bands from 1.7–2.6 μm as(Thomas et al., 2017) 

suggested. All preprocessing were performed by CRISM 

Analysis Toolkit. We manually set a series of segments (500, 

1000, 1500, 2000, 2500, 3000) to run SLIC algorithm, the results 

are shown in Fig. 8. FATT was then performed to fit magnesite 

spectrum CACB06 in each region iteratively. The number of 
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eigenvectors was determined according to the data’s intrinsic 

dimension, which was estimated by HySime algorithm(Bioucas-

Dias et al., 2008) Finally, we used a decision fusion strategy(Li 

et al., 2015), where a detection map is produced in each 

segmentation and the final distribution map is generated with a 

voting strategy. 

 

Fig. 9 (a) shows CRISM spectral parameters (R(MIN2295_2480), 

G(MIN2345_2537), B(CINDEX)). Red/magenta colors indicate 

Mg carbonates, blue color indicates carbonates, while green/cyan 

colors indicate Fe/Ca carbonates(Viviano-Beck et al., 2014). Fig. 

9 (b). shows the final detection map. Our detection results are to 

a certain extent related to red and blue colors distribution in Fig. 

9 (a), that’s because we used magnesite as a target. Naturally, we 

didn’t detect Fe/Ca carbonates (red/magenta colors in Fig. 9 (a)). 

The modeled spectrum together with magnesite spectrum are 

shown in Fig. 9 (c). However, there are still some discrepancies 

between our detection result and spectral parameters map, this 

will be solved in the future. 

 

 

Figure 8. Superpixel segmentation results of FRT00003e12 (unprojected) by SLIC with different input parameter (segments), the 

titles show the actual number of segments in each figure. The base map is the default false color of 3e12 (R:2.529μm, G:1.506μm, B: 

1.080μm), the boundaries are represented by yellow lines. The denser the boundaries, the finer the segmentation. 

 

 
Figure 9. (a) CRISM spectral parameters map (R(MIN2295_2480), G(MIN2345_2537), B(CINDEX)), (b) Our detection map, (c) 

Modeled spectrum by FATT and magnesite spectrum 

 

 

5. CONCLUSION AND FUTURE WORK 

In this work, we first systematic investigated the performance of 

different number of eigenvectors upon different signal to noise 

ratio (SNR) data. Then we proposed a novel target transformation 

method, this method introduces the superpixel into the popular 

FATT technology. Finally, we used a decision fusion strategy to 

produce the final mineral map. Our experimental results, 

conducted using simulated data sets 1 indicate that the limited 

high abundance target pixel is insensitivity to noise and easier 

identified than distributed more widely but with low abundance 

target pixel. What’s more, both simulated data set 2 and real 

hyperspectral data CRISM, illustrate the proposed method can 

identify target minerals in the scene effectively. Although the 

detection results are encouraging, we have to take such problems 

into consideration: (1) how to set the threshold of fitting residual 

of different minerals adaptively, (2) the targets are narrowed to a 

small segments, how to determine its location in pixel scale. 
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