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ABSTRACT: 

The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16% in the classification 

of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature 

variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling 

multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification 

accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining 

six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value 

of 89.58%. The classification accuracy of object-based RF classification was 1.42% higher than that of pixel-based classification 

(88.16%), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based 

analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and 

mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide 

technical support and theoretical reference for remotely sensed monitoring land reclamation. 

1 INTRODUCTION1 

China has a rather large mining industry. The exploitation of 

mineral resources has resulted in great contributions to China’s 

social and economic development, yet it has also caused 

seriously negative impacts on land resources and the ecological 

environment in some regions. Therefore, land reclamation and 

ecological reconstruction have become important measures to 

coordinate the development of mineral resources and the 

protection of land resources, as well as to promote the 

construction of an ecological civilization. The recognition of 

the extraction and classification of land cover and use 

information in reclamation areas using remote sensing 

technology has become one of the important approaches in the 

verification and assessment of the effectiveness of land 

reclamation. This is also critical to continuously track the 

management and maintenance of the reclaimed land in the later 

stages. 

With a single pixel as the unit of analysis, traditional 

pixel-based remotely sensed imagery classification algorithms 

could not take into account the spatial relationship among 

neighboring pixels to a certain extent. This isolates the 

recognition results and increases the likelihood of the 

salt-and-pepper phenomenon. However, object-oriented 

classification makes up for the deficiencies of traditional 

pixel-based classification methods. Among the current remotely 

sensed imagery classification methods based on machine 

learning, the random forest (RF) classification method features 

relatively high accuracy, fastness in processing large data sets, 

insusceptibility to overfitting, strong ability to process 

multidimensional variables and the capability of estimating the 

importance of variables. Therefore, this method is widely used 
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in multidimensional data classification and regression, and has 

achieved relatively good results (Yue Ma et al, 2016). 

In several countries, early studies have been carried out on the 

application of the RF classification method to remotely sensed 

imagery classification. For example, in a study by Pal. M and 

Pall Oskar Gislason et al., the method was used to classify land 

cover, and was compared with methods such as iterative, 

support vector machine (SVM) and decision tree, in terms of 

accuracy and efficiency to verify the superiority of the RF 

classification method (M. Pal., 2005; Gislason, P.O., 2006). In 

recent years, the RF classification method has also been applied 

to the classification of remotely sensed imagery in domestic 

studies. For instance, in studies conducted by Ma Yue and Guo 

Yubao, this method was used in the classification and extraction 

of land use information in both farming and urban areas, and 

achieving comparatively high accuracy in each case (Yubao 

Guo, 2016). However, current studies and application of the RF 

classification method in China are insufficiently comprehensive. 

For example, the RF classification method itself has certain 

defects. It is excessively encapsulated, the operation process is 

uncontrollable, and the model can only be optimized through 

parameter adjustment. Moreover, most studies focus on 

medium-resolution images and plain areas, while few studies 

focus on high-resolution images and mountainous areas. 

Industrial and mining reclamation areas are mostly located in 

mountainous and hilly regions where the terrain is undulating, 

the distribution of surface features is fragmented, the project 

area is usually small and the layout is often scattered. The 

accuracy of extracting information on surface features using 

medium-resolution images cannot meet the demand for land 

reclamation management. Therefore, it is necessary to carry out 

studies on land use classification with high-resolution images in 

industrial and mining reclamation areas. Besides, the 

object-oriented RF classification method can make up for the 

shortcomings of the pixel-based classification method and help 

improve the classification accuracy. 
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In this study, the object-oriented RF classification method was 

applied to classify land use information in industrial and mining 

reclamation areas using high-resolution images. Compared with 

support vector machine (SVM) and artificial neural network 

(ANN), the object-oriented RF classification method was better 

in terms of performance and applicability in land use 

classification of industrial and mining reclamation areas, which 

provides theoretical reference and technical support for 

monitoring of land reclamation. 

 

2 OVERVIEW OF THE STUDY AREA 

The study area is located in Shiping Village, Gulin County, 

Luzhou City, Sichuan Province that geographic coordinates is 

28°0′55′′~28°3′26′′N, 105°59′32′′~106°2′13′′E. With an altitude 

of 410~1025 m, this area is located within the middle 

subtropical zone, featuring an average annual temperature of 

17.1~18.5℃ and an average precipitation of 748.4~1184.2 mm. 

Since there are a number of sulfur plants and factories in this 

study area, there are piles of waste sulphur that cause pollution 

to the surrounding land (Yufang Zhang et al, 2014). According 

to Current Land Use Classification (GB/T 2010-2017), the 

types of land use in the study area include arbor forest, 

shrubbery land, farmland, industrial and mining land, rural 

housing land, transportation land (highways and country roads) 

and river ponds. Figure 1 shows the geographical location, 

distribution of sampling points, and remotely sensed imagery 

data of the study area. 

 

 
Figure 1. Location of study area, training samples and 3D representation of remote sensing image 

 

3 DATA COLLECTION AND PREPROCESSING 

The data used in this study was the GF-1 satellite remotely 

sensed imagery. The auxiliary data included UAV aerial 

imagery, DEM data, ground measurement data and Google 

Earth data, among which, the GF-1 satellite remotely sensed 

imagery was used for the classification and extraction of land 

use information in reclamation areas. DEM data was used as 

the auxiliary data to extract slope and aspect information 

required for image classification and the improvement of image 

classification accuracy. The UAV aerial imagery and Google 

Earth data were used for sample collection and accuracy 

evaluation. 
 

3.1 GF-1 Satellite Remotely Sensed Imagery 

Launched in 2013, the GF-1 satellite carried two 2m-resolution 

panchromatic/8m-resolution multispectral cameras (PMS) and 

four 16m-resolution wide-field-of-view cameras (WFV) (Limin 

Wang et al, 2015). The image pair collected by the 2m PAN/8m 

PMS of GF-1was selected as the remote sensing data used in 

this study. There were 5 bands, namely B, G, R, NIR and PAN. 

The date was collected on October 9, 2016 when there was no 

cloud cover. Image preprocessing was performed using the 

ENVI5.3 software platform. Preprocessing of multispectral data 

included radiometric calibration, FLAASH module atmospheric 

correction and orthorectification, after which radiometric 

calibration and orthorectification of the panchromatic data were 

conducted. Fusion of panchromatic and multispectral data were 

then performed using the Gram-Schmidt method. Finally, the 

imagery was tailored to generate the image data of the study 

area (Yuqiu Jia, 2015). 

 
3.2 Auxiliary Data 

In the case of the auxiliary data, the aerial images were taken 

on November 2016 with a Pentax-645D camera mounted on a 

UV-II UAV, with a spatial resolution of 0.2 m. After distortion 

correction and free network aerial triangulation encryption of 

the aerial images, the DEM data had been produced with a 

spatial resolution of 2 m. 

 

3.3 Ground Measurement and Sample Data 

The ground measurement data was synchronously collected as 

the UAV took the aerial images. Tianbao hand-held GPS was 

used as the ground measurement device. It has a horizontal 

accuracy of greater than 1m (Trimble geoexplorer 2008 Series 

GeoXH, trimble navigation limited, USA). In addition, Google 

Earth images were also used to assist in the selection of training 

and test samples. Specifically, the training samples had 48,279 

pixels, (20%), and the test samples had 209,691 pixels (80%). 

 

4 METHODS 

4.1 Technical Methods 

The workflow of the technical methods used in this study is as 

follows: (1) Preprocess and sharpen the panchromatic and 

multispectral images, register and resize aerial images, DEM 

images and satellite images, and resample aerial images with a 
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spatial resolution of 1 m using the Nearest Neighbor method to 

increase the image processing speed; (2) Calculate and select 

feature variables based on spectrum, terrain, texture and spatial 

information of the data; (3) Establish four different feature 

variable combination models, i.e. Model 1 (SPE), Model 2 

(SPE+DEM), Model 3 (SPE+DEM+TXT) and Model 4 

(SPE+DEM+TXT+SPA), to respectively perform pixel-based 

RF classification and assess the classification accuracy of each 

model; (4) Select the model with the highest classification 

accuracy for multiresolution segmentation, conduct 

object-oriented RF classification with different scales, and 

assess the results for accuracy (Maxwell, A. E., 2015; Chaofan 

Wu et al, 2016); (5) Compare the object-oriented RF 

classification method with the SVM and ANN classification 

methods, and assess the performance of the object-oriented RF 

classification method. Figure 2 shows the workflow. 

 

 
Figure 2. Workflow of the study 

 
The calculated characteristic variables of the images included 

the normalized difference vegetation index (NDVI) which is 

suitable for extracting vegetation information. In also included 

the biophysical composition index (BCI) which is suitable for 

extracting impervious surfaces (Hanqiu Xu et al, 2016). These 

are calculated based on spectral information, the slope, aspect 

and curvature calculated based on topographic data, the mean, 

variance, homogeneity, entropy and second moment calculated 

based on texture information, and Local Moran's I and Local 

Getis Ord Gi (Yu Zhao et al, 2016) reflecting spatial 

information. 

 
4.2 Calculation and Selection of Feature Variables 

The images were acquired in October, when the vegetation 

coverage of some dry lands is relatively low, and their visual 

characteristics are quite similar to those of industrial and 

mining land. Since most spectral indices are designed to 

highlight only one land cover, and confusion between other 

land cover types, in particular impervious surfaces and bare soil, 

has not been successfully addressed. (Hanqiu Xu et al, 2010). 

Therefore, the BCI index was constructed to enhance the ability 

of the classification algorithm to identify areas with low 

vegetation coverage and soil as well as industrial and mining 

areas. The calculation of BCI is as follows (Horne, J. H., 2003):  

 
1 0.326 0.509 0.56 0.567TC B G R NIR     (1) 
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Where B, G, R and NIR denote the blue, green, red and 

near-infrared band, respectively, TC1, TC2 and TC3 are the first 

three components after the tasseled cap transformation. H, V 

and L are the normalized TC1, TC2 and TC3. 

 

Topographic feature variables included DEM, and slope, aspect 

and curvature calculated based on DEM. For the texture 

information feature variables, a 3×3 mobile window was 

selected after comparative analysis with multiple experiments. 

The gray-level co-occurrence matrix (GLCM) was applied to 

identify 8 kinds of texture features (Wenjing Wang et al, 2017) 

for each of the 4 bands of the images, i.e., mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment 

and correlation (Shuzhi Wang et al, 2011), which resulted in a 

total of 32 variables. Because of the high correlation among 

these variables, they were reduced by principal component 

analysis (PCA) transformation. With the standard deviation of 

0.3 as the threshold, a forward sorting of the variables was 

conducted, and the first 12 variables (PC1~PC12) were 

preferably selected to be involved in the image classification. 

Local Moran’s I and Local Getis Ord Gi are the spatial 

information feature variables calculated based on all the 

spectral, topographic and texture information. A forward 

sorting of the variables was carried out with a standard 

deviation of 0.6 as the threshold, and 10 variables were selected 

to be involved in the classification. All the characteristic 

variables are shown in Table 1. 

 

Categories Feature variables Total 

Spectrum 

features 
B, G, R, NIR, NDVI, BCI 6 

Terrain 

features 

DEM, slope, aspect, max curvature, 

min curvature 
5 

Texture 

features 
PC1~PC12 12 

Spatial 

relationship 

features 

Gi-B, G, R, NIR, NDVI, BCI, DEM 

and Moran'I-PC2, PC4, PC6 
10 

Table 1. Statistic of feature variables 

 

4.3 RF Classification Method 

Given that a machine learning algorithm is composed of a 

combination of decision trees, the RF classification method 

runs relatively quickly and is suitable for processing 

high-dimensional data (Zhen Lei, 2012). Its implementation 

process is as follows: Firstly, a random Bootstrap method was 

used to extract N training sets from the original data by means 

of sampling with replacement. Such a process is called Bagging. 

Secondly, N decision trees were constructed using the N 

training sets. During the growth of each tree, m (m ≤ M) feature 

variables were randomly selected from the M feature variables 

for internal node partitioning. In the end, the types of new 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-199-2018 | © Authors 2018. CC BY 4.0 License.

 
201



 

 

samples were determined by voting based on the prediction 

results of the N decision trees. In the process of training data 

extraction, about 1/3 of the data was not extracted. Known as 

the out-of-bag (OOB) data, such data can be used for error 

assessment of category misclassification and variable 

importance estimation. The Gini coefficient was used in the 

variable selection process to measure the impurity level of the 

variables. Usually, the default number of trees (ntree) is 100, 

and the default number of variables (mtry) is the square root of 

the total number of image bands (Xingling Wang et al, 2005). 

To further improve the classification accuracy, the grid-search 

method based on the OOB error was used in this study to 

optimize ntree and mtry. 

 

Using the grid-search method, with ntree = M and mtry = N, 

different RF classifiers were trained with M×N (ntree, mtry) 

combinations, then the learning accuracy of each RF classifier 

was estimated according to the OOB error, and the combination 

with the highest learning accuracy was eventually obtained 

among a number of combinations as the optimal parameters. 

The advantage of this method is that it can ensure that the 

obtained search solution is the global optimal solution in the 

grid, which can avoid major errors (Jiantao Liu et al, 2016). 

Both the RF classification algorithm and the grid-search 

algorithm were implemented in the IDL 8.3 language platform. 

 
4.4 Multiresolution Segmentation 

As the key part of object-based classification method, image 

segmentation divides images into several homogenous object 

units. Among the many image segmentation methods, 

multiresolution segmentation is the most widely used. It is a 

regional merge segmentation method based on minimum 

heterogeneity. To conduct multiresolution segmentation using 

this method, it is necessary to set the segmentation parameters 

in advance, including the weight of each band, spectral factor, 

shape factor, and segmentation scale. Since the selection of 

scale parameters directly determines the quality and accuracy of 

object-oriented image analysis, scale parameters are the most 

important parameters. The multiresolution segmentation was 

performed in the eCognition 9.0 platform. In order to further 

optimize the segmentation results, estimation of scale parameter 

(ESP) was used to evaluate the scale parameters. The curve of 

local variance and the heterogeneity change rate at different 

scales were made by ESP, and the potential optimal parameters 

were found using the ROC-LV curve. 

 
4.5 Training and Test Samples 

The training and test samples pixel were selected based on the 

UAV aerial imagery, ground actual measurement data, and 

high-resolution Google Earth imagery. Of this data, 48,279 

pixels were training samples (20%), and 209,691 pixels were 

verification samples (80%). Table 2 shows the number and 

distribution of the different types of ground samples. 

Class name Training pixel Test pixel Total pixel 

Forest 21800 60738 82538 

Shrub 3499 26345 29844 

Farmland 10192 98784 108976 

Mine 6294 17130 23424 

Village 2496 3259 5755 

Road 3085 2352 5437 

Water 913 1083 1996 

Total 48279 209691 257970 

Table 2. Numbers of samples for each class 

 
5 RESULTS AND ANALYSIS 

5.1 Results of Pixel-based Classification 

The grid-search method was used to optimize the parameters of 

the RF algorithms of the 4 models. The mtry parameter 

optimization range of Model 1 is (2, 3, 4, 5), and the mtry 

parameter optimization range of Model 2 is (3, 5, 7, 9), that of 

Model 3 is (5, 10, 15) and that of Model 4 is (6, 12, 18) The 

optimization range of the ntree parameter of all the 4 models is 

(25, 50, 75, 100). The optimal mtry and ntree of the 4 models 

are (4,100), (7,100), (10,100) and (12,100), respectively. The 

above parameters were used to perform the RF classification 

algorithm to obtain the classification results. The overall 

classification accuracy of the Model 1~4 are 82.79%, 84.91%, 

86.75% and 88.16%, respectively. According to the variation 

range after topographic features were added as a variable, the 

classification accuracy experienced a maximum improvement 

of 2.12%. The classification accuracy can also be increased by 

adding the texture and spatial features as the variables. 

 

Among the 4 models, Model 4 has the highest classification 

accuracy of 88.16%. According to the confusion matrix in 

Table 3, the classification accuracy of shrub and villages is 

below 80%, i.e., 76.75% and 68.61%, respectively. Although 

the accuracy is relatively low, they are 19.86% and 14.3% 

higher than the 56.89% and 54.31% of Model 1. This indicates 

that the classification accuracy can be significantly improved if 

there are multiple characteristic variables. Figure 3 shows the 

commission and omission errors of various types of surface 

features. After adding topographic information as a variable, 

the commission and omission errors of each ground type were 

reduced to varying degrees, especially for shrub, villages and 

roads. It can be seen that topographic data is relatively effective 

for extracting construction land information. With texture and 

spatial information included, the commission and omission 

errors of the various types of surface features generally showed 

a downward trend. Although the commission error of some 

surface features, e.g., road, was improved, the omission error 

decreased. Therefore, the classification accuracy was improved 

overall. 

 

Class name Forest  Shrub  Farmland  Mine  Village  Road  Water  Total  

Unclassified 0 0 0 0 0.03 0 0 0 

Forest 98.5 17.84 4.27 1.44 3.96 0 1.29 32.97 

Shrub 0.67 76.75 4.63 0.07 0.06 0 0 12.02 

Farmland 0.84 4.92 86.57 4.68 25.84 0.89 0.46 42.44 

Mine 0 0.3 0.87 80.25 0.09 0.98 2.31 7.03 

Village 0 0.02 3 5.1 68.61 0.21 2.77 2.92 

Road 0 0.17 0.66 8.42 1.38 97.92 0.18 2.14 

Water 0 0 0 0.04 0.03 0 92.98 0.48 

Total 100 100 100 100 100 100 100 100 

Table 3. Accuracy assessment of Model 4 (%) 
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a. commission errors b. omission errors 

Figure 3. Commission and Omission errors of the classification results of Model 1~4 

 
5.2 Comparison of Different Methods 

Using the same 33 feature variables of Model 4, the images 

were classified using SVM (denoted as SVM_Model 4) and 

ANN (denoted as ANN_Model 4) method, and the 

classification results were compared with the RF classification 

results of Model 4 (RF_Model 4). The algorithms were 

compared in terms of execution time, classification accuracy, 

and Kappa coefficient such that the applicability of each 

classification method to the classification and extraction of land 

use information in reclamation areas was analyzed. The 

comparison results are shown in Table 4. 

 

Classificatio

n model 

Number 

of feature 

Classificat

ion time 

Overall 

accuracy 
Kappa 

RF_Model 4 33 26min 88.16% 0.827 

SVM_Model 4 33 57min 84.89% 0.781 

ANN_Model 4 33 63min 83.92% 0.761 

Table 4. Overall accuracy assessment of different method 

 
The comparison results show that the overall accuracy of 

SVM_Model 4 and ANN_Model 4 is 81.14% and 83.92%, 

respectively. This is 3.27% and 4.24% lower than that of 

RF_Model 4. In regard to the execution time, the classification 

of RF_Model 4 took 26 minutes, which is much lower than the 

57 minutes and 63 minutes of SVM_Model 4 and ANN_Model 

4 respectively, thus greatly improving the classification 

efficiency. Table 5 shows the inter-class accuracy assessment. 

The mean accuracy of RF_Model 4 is 85.94% with a standard 

deviation of 0.113; the mean accuracy of SVM_Model 4 is 

81.71% with a standard deviation of 0.137 and the mean 

accuracy of ANN_Model 4 is 74.9% with a standard deviation 

of 0.186. From the perspective of descriptive statistics, 

RF_Model 4 has the highest overall accuracy, the most even 

mean accuracy and the smallest dispersion. This means that this 

method can achieve a better effect in the extraction of several 

surface features. In summary, the RF method has obvious 

advantages in the classification and information extraction of 

industrial and mining land. In contrast, the ANN method is 

poorly applicable to the extraction of such information. 

 

Classification model Forest Shrub Farmland Mine Village Road Water Mean Std. 

RF_Model 4 98.50 76.75 86.57 80.25 68.61 97.92 92.98 85.94 11.3 

SVM_Model 4 98.05 71.06 82.63 75.64 59.99 94.05 90.58 81.71 13.7 

ANN_Model 4 99.48 58.47 87.09 55.14 53.97 83.25 86.89 74.90 18.6 

Table 5. Object types accuracy assessment of different method (%) 

 
5.3 Segmentation and Object-based Classification Results  

Among the 4 per-pixel RF classification models, the 

classification accuracy of Model 4 is as high as 88.16%. 

Therefore, scale segmentation was conducted based on the 

33-band variables images of Model 4. The shape factor was set 

as 0.2, and the compactness factor was set to be 0.5. Six scale 

parameters were selected through ESP, i.e., 88, 71, 64, 49, 28 

and 10, to perform multiresolution segmentation, and the 

results of local segmentation are shown in Figure 4. It can be 

seen that the segmentation results of the scale 88, 71 and 64 are 

not obviously different from each other. The segmentation 

results become finer from scale 49, whereas the segmentation 

results of scale 28 and 10 are too fine and there are excessive 

objects. The number of segmentation objects corresponding to 

the 6 scales are 704, 1077, 1336, 2352, 7363 and 49071, 

respectively. The number of objects segmented by scale 28 and 

10 is much larger than that of the first 4 scales, indicating a 

certain degree of over-segmentation.  

 

RF classification was performed based on the segmentation 

results of six scales. The overall accuracy was 87.71%, 86.89%, 

85.12%, 89.58%, 84.55% and 80.54%, respectively. The local 

effect of the classification is shown in Figure 5. When the 

segmentation scale is 49, the classification accuracy reached 

the highest value of 89.58%, and the confusion matrix is shown 

in Table 6. The classification accuracy of object-based 

classification is 1.42% higher than that of pixel-based 

classification (88.16%), and the classification accuracy is 

further improved. The classification results of the two are 

locally compared, as shown in Figure 6.

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-199-2018 | © Authors 2018. CC BY 4.0 License.

 
203



 

 

   
a. Result of scale 88  b. Result of scale 71 c. Result of scale 64 

   
d. Result of scale 49 e. Result of scale 28 f. Result of scale 10 

Figure 4. Multiresolution segmentation results using six different segmentation scale 

 

 

   
a. Classification result of scale 88 

(overall accuracy 87.71%) 

b. Classification result of scale 71 

(overall accuracy 86.89%) 

c. Classification result of scale 64 

(overall accuracy 85.12%) 

   
d. Classification result of scale 49 

(overall accuracy 89.58%) 

e. Classification result of scale 28 

(overall accuracy 84.55%) 

f. Classification result of scale 10 

(overall accuracy 80.54%) 

Figure 5. Classification result of six different segmentation scale 

 

Class name Forest  Shrub  Farmland  Mine  Village  Road  Water  Total  

Unclassified 0 0 0 0 0 0 0 0 

Forest 99.42 19.68 2.24 0 0.68 0 4.75 32.37 

Shrub 0.58 77.9 10.52 0 0.12 0 0 14.92 

Farmland 0 0.09 86.67 0.95 8.66 5.27 0.37 41.12 

Mine 0 0 0.02 92.65 0 14.24 0 7.73 

Village 0 0.13 0.36 4.09 85.17 9.52 2.98 1.96 

Road 0 2.19 0.19 2.32 5.37 70.96 0 1.43 

Water 0 0 0 0 0 0 91.9 0.47 

Total 100 100 100 100 100 100 100 100 

Table 6. Confusion matrix and accuracy assessment of object-based RF classification 
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a. Object-based classification b. Pixel-based classification 

Figure 6. Comparison of local classification result between 

object-based and pixel-based method 

 

As can be seen from Figure 6, the results obtained by 

object-based classification are relatively compact, the 

fragmentation degree is significantly reduced, the category and 

the shape are relatively highly consistent, the boundaries among 

different geographical categories are relatively clear, the 

distinction among different categories is comparatively obvious, 

and the noise is effectively reduced. Therefore, object-based 

classification can effective address the “salt-and-pepper 

phenomenon” encountered by the traditional pixel-based 

classification method. 

 

6 CONCLUSIONS 

Land reclamation and ecological reconstruction have become 

important measures to coordinate the development of mineral 

resources and the protection of land resources, as well as to 

promote the construction of an ecological civilization. However, 

industrial and mining reclamation areas are mostly located in 

mountainous and hilly regions where the terrain is undulating, 

the distribution of surface features is fragmented, the project 

area is usually small and the layout is often scattered. The 

accuracy of extracting information on surface features using 

medium-resolution images cannot meet the demand for land 

reclamation management. Therefore, it is necessary to carry out 

studies on land use classification with high-resolution images in 

industrial and mining reclamation areas. Besides, the 

object-oriented RF classification method can make up for the 

shortcomings of the pixel-based classification method and help 

improve the classification accuracy.  

 

In this study, the object-oriented RF classification method was 

applied to classify land use information in industrial and mining 

reclamation areas using GF-1 remotely sensed images. The RF 

method based on grid-search parameter optimization achieved a 

classification accuracy of 88.16% in the classification of 

images with 33 characteristic variables, this classification 

accuracy was higher than that of SVM and ANN under the 

same characteristic variables.  In terms of efficiency, the RF 

classification method performs better than SVM and ANN, it 

was more capable of handling multidimensional feature 

variables. Therefore, compared with SVM and ANN, the RF 

classification method was better in terms of performance and 

applicability in land use classification of industrial and mining 

reclamation areas. The RF method combined with object-based 

analysis approach could highlight the classification accuracy 

further. The multiresolution segmentation approach on the basis 

of ESP scale parameter optimization was used for obtaining six 

scales, i.e., 88, 71, 64, 49, 28 and 10, to perform image 

segmentation, when the segmentation scale was 49, the 

classification accuracy reached the highest value of 89.58%. 

The classification accuracy of object-based RF classification is 

1.42% higher than that of pixel-based classification (88.16%), 

and the classification accuracy is further improved. Therefore, 

the object-oriented RF classification method was better in terms 

of performance and applicability in land use classification of 

industrial and mining reclamation areas, which provides 

theoretical reference and technical support for monitoring of 

land reclamation. 
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