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ABSTRACT:

Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the
ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been
developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion
methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a
training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is
applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME-
2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data
Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will
be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution
and corresponding large increases in the amount of data.

1. MOTIVATION

Ozone (O3) plays a crucial role in the Earths atmosphere and its
chemical processes (production and destruction) are highly re-
lated to climate change and air pollution caused by anthropogenic
emissions. Therefore, accurate information of global/regional
O3 vertical distributions over the troposphere and stratosphere
turns out to be important to atmospheric environment commu-
nities. Satellite remote sensing of O3 information using the ul-
traviolet (UV) radiation has been comparatively mature. A num-
ber of European satellite sensors, e.g., the Global Ozone Mon-
itoring Experiment (GOME) series, the SCanning Imaging Ab-
sorption spectroMeter for Atmospheric CHartographY (SCIA-
MACHY), and the Ozone Monitoring Instrument (OMI), have
mapped the global and regional O3 distributions. On October
13, 2017, the TROPOspheric Monitoring Instrument onboard the
Sentinel-5 Precursor (TROPOMI/S5P), which is one of the next
generation of European Copernicus atmospheric composition mis-
sions, was launched from Plesetsk, Russia. With its global cover-
age and open data policy, the mission will support global efforts
to monitor atmospheric pollution and to improve our understand-
ing of chemical and physical processes.

These nadir-viewing satellite sensors are preferable to retrieve to-
tal column products. Total columns of O3 can be accurately and
efficiently estimate by the Differential Optical Absorption Spec-
troscopy (DOAS) algorithm that essentially uses the Huggins ab-
sorption band (320–360 nm). This conventional approach nor-
mally requires an ozone climatology for air mass factor (AMF)
calculation, but discrepancies between the climatological profile
and the actual vertical distribution could lead to a retrieval error
of up to 4 % at high solar zenith angles (SZAs) in derived total
column amount (Lerot et al., 2014). As most atmospheric ozone
resides in the stratosphere above, tropospheric columns of O3 can
be derived by subtracting an estimate of the stratospheric columns
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or by differencing total columns in cloud-free pixels from those
in nearby pixels with thick/high convective clouds (the so-called
CCD method). The CCD method can only be applied in the trop-
ical region where the assumption of a zonally invariant strato-
spheric column is valid. A number of relevant studies (Valks et
al., 2014, Heue et al., 2016) have been conducted for GOME-2
measurements. Therefore, the retrieval of total and tropospheric
O3 abundances can largely benefit in terms of representativity by
obtaining reliable an ozone profile shape.

However, characterizing O3 profile shapes from nadir-viewing
satellite measurements is still known to be challenging, partic-
ularly the ozone information in the troposphere. Direct retrieval
of tropospheric information has also been investigated and ap-
plied to the Global Ozone Monitoring Experiment (GOME) class
of instruments. In general, estimating atmospheric parameters of
interest directly from spectral measurements is often treated as an
ill-posed inverse problem that often requires an iterative inversion
of large matrices and multiple calls to radiative transfer calcula-
tions. An accurate forward model is important and needs to depict
the relationship between atmospheric parameters and measured
intensity. Furthermore, this classical inversion method is compu-
tationally expensive and often needs additional constraints, reli-
able a priori knowledge (Rodgers, 2000) and regularization pa-
rameterization (Xu et al., 2016) can be decisive to the retrieval
outcome. Alternatively, machine learning techniques, such as
neural network (NN), Gaussian processes, support vector ma-
chines, can learn this relationship quickly through a data-driven
training. Although machine learning has been widely used in
many research fields, a lot of potential capabilities can be ex-
ploited in atmospheric retrieval applications.

To derive O3 profile shapes from satellite UV measurements in
a very fast way, we have developed a novel retrieval algorithm
called Full-Physics Inverse Learning Machine (hereafter, FP-ILM)
(Xu et al., 2017) and compared the first retrievals with the RAL
retrieval using the optimal estimation method (Miles et al., 2015).
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Figure 1. Diagram of FP-ILM for estimating O3 profile shapes from satellite measurements (Xu et al., 2017, Fig. 1). NN stands for a
neural network.

In this paper, we further apply the FP-ILM O3 profile shape to
total column retrieval from GOME-2 measurements and to tro-
pospheric column estimation.

2. ALGORITHM DESCRIPTION

The detailed theoretical background and implementation of FP-
ILM can be found in the previous work (Xu et al., 2017), and
is just summarized here for completeness. Figure 1 depicts a
schematic diagram FP-ILM algorithm during the training and op-
erational phases. During the training, the FP-ILM algorithm con-
sists the following main steps:

1. clustering O3 profile shapes;
2. simulating UV spectra with representative O3 profiles using

“smart-sampling” and a radiative transfer model;
3. obtaining the differential spectra and computing principal

components from these spectra;
4. training a NN for classifying the O3 profile shape corre-

sponding to an input;
5. developing a NN for scaling the O3 profile based on the

given total vertical column density (VCD).

The reference O3 profiles (volume mixing ratios) were built on
the Bodeker database (Bodeker et al., 2013) (“Tier 1.4” in this

study) which were globally taken from eight different spaceborne
data sets merged with ozonesonde data. The McPeters/Labow
climatology (McPeters and Labow, 2012) (the latest version de-
scribed in (Labow et al., 2015)) was merged with the Bodeker
database in order to provide the tropospheric O3 concentration.

We used the radiative transfer model VLIDORT (Vector LIn-
earized Discrete Ordinate Radiative Transfer) (Spurr, 2006) that
requires the model parameters consisting of the solar zenith an-
gle, viewing zenith angle, relative azimuth angle, surface albedo,
and surface pressure. The simulations were done for the wave-
length λ range between 290 and 335 nm. In particular, the so-
called “smart sampling” (Loyola R et al., 2016) approach was
used to generate a minimal number of training samples so that
the multi-dimensional input space and the output space can be
optimally covered.

The simulated spectra yδ(λ) were converted into the differential
spectra yδc(λ) by a lower-order polynomial fit:

yδc(λ) = yδ(λ)− PN (λ,pc) , (1)

where PN (λ,pc) is a polynomial of degree N . A total of nine
principal components were extracted from the original differen-
tial spectra with the transformed measurement vector y being

y = UT
M yδc(λ) , (2)
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where UM = [u1, . . . ,uM ] ∈ RM×M is an orthogonal unitary
matrix incorporating theM singular vectors uk of the covariance
matrix of the original measurement vectors.

The input vector to the classification NN comprised the five model
parameters used in the forward simulations and the nine principal
components. The weights and biases of each layer were initial-
ized with the Nguyen-Widrow procedure (Nguyen and Widrow,
1990), and the corresponding training was done by the Scaled
Conjugate Gradient backpropagation algorithm (Møller, 1993)
which is often used for pattern recognition applications. The
input vector to the scaling NN for estimating O3 profile shapes
comprised only the retrieved total VCD. For each O3 profile clus-
ter, a scaling NN was trained with the corresponding O3 VCDs
using the Nguyen-Widrow initialization procedure the Levenberg-
Marquardt backpropagation algorithm (Hagan and Menhaj, 1994).

During the operational phase, we implemented the inverse func-
tions (i.e., both trained NNs) derived from the training phase in
the framework of total column retrieval from satellite measure-
ments. Since the AMF/VCD conversion is an iterative process,
the profile shape estimated from the VCD at the current itera-
tion was used to obtain the next iterate. With the newly retrieved
VCD, the O3 profile shape was further adjusted.

3. FIRST RESULTS

In this section, first results of retrieved total columns of O3 from
GOME-2 onboard the MetOp-A satellite (GOME-2A, hereafter)
data using FP-ILM profile shapes are presented. For compari-
son, we used the operational GOME-2 product generated by the
GOME Data Processor (GDP) (Van Roozendael et al., 2006, Loy-
ola et al., 2011, Hao et al., 2014) that relies on the TOMS version
8 O3 profile climatology (Bhartia, 2003, McPeters et al., 2007).

Figure 2 shows the total VCD retrieval results from GOME-2A
data on November 25, 2017. It can be seen that the retrieved
VCDs using the two O3 profile schemes agree well, revealing that
the FP-ILM profile shape used in the total ozone retrieval seems
reasonable and may reflect the actual measurement conditions.

The FP-ILM O3 profile can be used to obtain tropospheric ozone
columns by integrating the partial columns at the layers in the tro-
posphere. The computations using the FP-ILM and CCD schemes
(not shown here) were done for monthly averaged values (below
200 hPa) on a 1.25◦ by 2.5◦ latitude-longitude grid for the trop-
ical region between 20◦ N and 20◦ S. However, the tropospheric
columns using the FP-ILM retrieval seem less sensitive to atmo-
spheric variability including the identification of trends, indicat-
ing the needs for further investigations.

4. CONCLUSIONS

This paper exploited the ability of the FP-ILM algorithm to re-
trieve total and tropospheric ozone from satellite UV measure-
ments. The retrieved total ozone from GOME-2A data using the
FP-ILM profile shape seemed comparable with the one using the
TOMS climatology, whereas the tropospheric ozone retrieval us-
ing the FP-ILM retrieval showed discrepancies as compared to
the CCD method. Future work will focus on improving the algo-
rithm in order to optimize the results.

Figure 2. Comparison of retrieved total O3 columns from
GOME-2A data between the DOAS retrieval using the FP-ILM

profile (top) and the GDP 4.8 product (bottom) on November 25,
2017.
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