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ABSTRACT: 

 

Fundamental Matrix Estimation is of vital importance in many vision applications and is a core part of 3D reconstruction pipeline. 

Radial distortion makes the problem to be numerically challenging. We propose a novel robust method for radial fundamental matrix 

estimation. Firstly, two-sided radial fundamental matrix is deduced to describe epipolar geometry relationship between two distorted 

images. Secondly, we use singular value decomposition to solve the final nonlinear minimization solutions and to get the outliers 

removed by multiplying a weighted matrix to the coefficient matrix. In every iterative step, the criterion which is the distance 

between feature point and corresponding epipolar line is used to determine the inliers and the weighted matrix is update according to 

it. The iterative process has a fast convergence rate, and the estimation result of radial fundamental matrix remains stable even at the 

condition of many outliers. Experimental results prove that the proposed method is of high accuracy and robust for estimating the 

radial fundamental matrix. The estimation result of radial fundamental matrix could be served as the initialization for structure 

from motion. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

Fundamental matrix describes the epipolar geometry 

relationship between two images in the same scene. It is 

independent of scene structure, and only depends on the camera 

internal parameters and motion parameters. Fundamental matrix 

estimation is a basic and key issue in computer vision. It plays 

an important role in many vision applications such as SLAM, 

motion segmentation, structure from motion, image stitching 

and dense stereo matching. Moreover, it’s one of the core parts 

of 3D reconstruction pipeline. 

 

Given its vital importance, many methods were proposed in the 

past decades. (Longust H, 1984) first proposed to apply 

epipolar geometry constraints to scene reconstruction. The five 

point relative pose solver with known camera internal 

parameters (Stewénius H, 2006) and the six point relative pose 

solver with unknown focal length (Stewenius H, 2005), the 

well-known 7-point and normalized 8-point algorithm 

(Armangué X, 2003) were the frequently used linear estimation 

algorithm. These methods had high computational efficiency 

regardless of false matches and outliers, but poor accuracy and 

stability if taking these factors into account. Robust methods, 

such as RANSAC, LMedS, MLESAC, MAPSAC, could deal 

with false matches and outliers based on multiple sampling 

estimation parameter model, which resulted in heavy 

computational burden and low efficiency. 

 

However, most of the above-mentioned method are based on 

the assumption that the camera follows pin-hole model, while 

with the popularity of unmanned aerial vehicle camera, 

cellphone cameras and GoPro Hero, the importance of radial 

distortion models increases, especially in 3D reconstruction and 

SLAM. A non-minimal method based on 15 correspondences 

for fundamental matrix estimation with radial distortion was 

first proposed in (Barreto J, 2005) A number of minimal 

problems for fundamental matrix estimation with radial 

distortion have been studied in (Kukelova Z, 2007a, 2007b), 

where practical solutions were given in some cases. Fast and 

robust algorithms for two minimal problems for simultaneous 

computation of fundamental matrix and two different radial 

distortion were given from 12 point correspondences based on a 

generalized eigenvalue formulation (Byrod M, 2008). A 

numerically stable and efficient solution for the calibrated-

uncalibrated image registration problem with radial distortion 

was presented in (José H, 2012). Based on the plumb-line 

assumption, constraints on the radial distortion center from 

epipolar geometry were derived (Henrique B., 2013). More 

recently, a fast and stable polynomial solver based on Gröbner 

basis method was derived (Jiang F, 2014), which enables 

simultaneous auto-calibration of focal length and radial 

distortion. In the meantime, the detail of using numerical 

Gröbner basis computations techniques was given. A more 

efficient and stable solution using 10 image correspondences 

was proposed by using the Sturm sequences method, which can 

be used in real-time applications (Kukelova Z, 2015). Moreover, 

a new formulation in which distortion center can be absorbed 

into the radial fundamental matrix was presented by (Brito J, 

2013). These solutions make great progress in numerical 

stability and efficiency. However, the fast, accurate and robust 

solutions for the fundamental matrix with radial distortion 

estimation need to be further studied. 

 

In this paper, we propose a new robust method for estimating 

the fundamental matrix with radial distortion based on 14 image 

correspondences. Unlike traditional robust estimation method, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2029-2018 | © Authors 2018. CC BY 4.0 License.

 
2029

mailto:laser115@126.com


our method integrate the outlier removal procedure into the 

normalized 14-point algorithm, so as to estimate radial 

fundamental matrix robustly and fast. The main content of the 

paper is as follows: In section 2, the formulation of radial 

fundamental matrix is introduced and in section 3, the robust 

method for radial fundamental matrix estimation is discussed in 

detail. Finally, in section4, experiments on synthetic data and 

real images are implemented to prove the accuracy and robust 

of the proposed method.  

 

2. MAIN BODY 

2.1 Problem Formulation 

Assuming that  
T

, ,1ui ui uix ym  and 
T

, ,1ui ui uix y     m are 

the point correspondences on the two images ,I I   taken by 

different cameras in the same scene. According to epipolar 

geometry theory, the 3 3  fundamental matrix has the 

following relationship with the two points in undistorted case: 
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In this problem, we adopt one-parameter division model given 

with homogeneous coordinates as the following formula: 
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Where          = equality up to a scalar multiple 

  = the radial distortion parameter 

dim = distorted image points 

 

The distortion center is assumed to be known at first. Combined 

with the equation (1) and (2), using different distortion 

parameter 1 and 2 in each image, we can get the following 

equation: 
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After transformation, which can be rewritten as 

 

2 2

2 2

1 0
1

di

di

di di di di

di di

x

y
x y x y

x y


   

 
 
      
 

 

F        (4) 

Where 
11 12 13 2 13

21 22 23 2 23

31 32 33 2 33

1 31 1 32 1 33 1 2 33

f f f f

f f f f

f f f f

f f f f







    



 
 
 
 
 
 

F
= the radial 

fundamental matrix 

 

             2 21di di di dix y x y     
, 2 21di di di dix y x y  

 

= the extended corresponding points. 

 

Using Kronecker products, equation (4) can be written as: 

 
2 2 2 2( , ,1, ) ( , ,1, ) 0di di di di di di di dix y x y x y x y         f     (5) 

Where       T

11 44( , , )F F
 

f  is called vectorization of



F .  

 

From each correspondence, we obtain a different row vector iA : 

 
2 2 2 2( , ,1, ) ( , ,1, )i di di di di di di di diA x y x y x y x y       (6) 

When there are n correspondence points ， we can get n 

coefficient row vectors. Stacking these vectors together, we can 

obtain a 16n coefficient matrix A and the following linear 

equation: 

 

Af 0                                     (7) 

So, f must lie in the null space of coefficient matrix A , 

similar to the eight point for the fundamental matrix estimation.  

 

2.2 Radial Fundamental Matrix Estimation 

In the ideal case, the effective dimension of the null-space of 

coefficient matrix equals to 2. However, account to the 

influence of noise and outliers, the effective dimension is 

always 0，which means no singular value 0. To deal with noise 

and outliers, we propose a new strategy to compute the null-

space of A . Introducing a weighted matrix W and multiplying 

it with the coefficient matrix, solving the linear equation (7) can 

be transformed into a nonlinear minimization problem: 

 
2

,

arg min
f W

WAf                        (8) 

Where      
1=diag( , , )nW w w = n n  diagonal matrix. 

When the correct correspondence belongs to the set of inliers, 

1iw  ; otherwise， 0iw  . 

 

At the very beginning of iteration, we can set the initialization 

as: , infn  W I ; Then, applying SVD to the weighted 

coefficient matrix ：  , , ( )svdU S V WA , where 

 1 16, ,v vV ,
1 16( , , )diag s sS , we can get two base 

vectors of the null space of the weighted coefficient 

matrix:
1 kf v , where

1 16: min( , , )kk s s s  
2 jf v , 

where
1 16: min( , , )j

j k
j s s s


 . 

 

In the same way as the strategy 7-point algorithm adopting for 

the improving of classical fundamental estimation, we use at 

least 14 correspondence for the above nonlinear minimization 

problem, where we can fix one of the coefficients and the 

true f is a combination of 1f  and 2f . 

 

1 2(1 )   f f f                          (9) 
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We perform the inverse vectorization of f and F  can be 

reassembled as: 

 

1 2 3 4( )F F F FF                          (10) 

In order to obtain , the rank 2 constrain of F  should be used 

and a cubic determinant constraint
1 2 3det( ) 0F F F  could be 

obtained, where the only unknown variable is . Furthermore, 

rank two of the fundamental matrix must be enforced via 

singular value decomposition. , , ( )svd  
 
U S V F ， and 

set (3,3) 0, (4,4) 0 S S , so we can obtain the estimation 

result of radial fundamental matrix
T

* *F U S V at the first 

iterative step。 

Computing the distance between the correspondence points and 

epipolar line： 
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And the element iw in weighted matrix W  can be updated using 

the following function： 
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Where        
max 15% 1( , , )nQ    is the lowest 15% quantiles 

of the geometric error: 

max = the maximum geometric error threshold 

 

By introducing this threshold, the probability that the correct 

inliers is classified as outliers is effectively reduced, and the 

iterative convergence rate is accelerated. In the following 

experiment, we set
max 1.6  . 

 

The above algorithm is iteratively computed until the null space 

of f converges, then we can get the final estimation result of 

radial fundamental matrix F . Generally, the iterations converge 

very quickly. Simple algebraic manipulation of Eq. (3) for 

distortion parameters computation leads to: 
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In order to improve the estimation accuracy and eliminate the 

influence of coordinate transformation, the corresponding point 

coordinates must be normalized before the iterative computation.  

Assuming the image coordinate of a feature point is 

( , )i ix y ， the image coordinates of feature points after 

normalization is ( , )i ix y : 
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T = the normalized transformation matrix: 
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After normalization, an effective standard coordinate system can 

be selected to eliminate the influence of coordinate change and 

the data would be scale invariance and coordinate origin 

invariance, thus effectively improving the accuracy of 

estimation results. 

 

2.3 Experiments 

In this section, we demonstrate the accuracy and robustness of 

proposed method by experiments on both synthetic data and 

real images. 

 

2.3.1 Synthetic data: In the experiment with synthetic data, 

we generate two images with the size of 640*480, where the 

equivalent focal length is 800 pixels, the distortion center is at 

the center of the images and the distortion parameters are [-

0.234; -0.145] respectively, regarded as 
true . The relative pose 

of the synthetic images are known and 3D reference points are 

randomly generated in the cubic space      2,2 2,2 4,8    .The 

2D correspondence points can be generated according to pin-

hole projective model, then distorted the points on the image of 

both cameras according to distortion model. The experiment 

data includes two groups: in the first group, we add a set of 

outliers disturbed by the false matches to the 2D 

correspondence points, whose percentage are 10%, 20% and 

30%. We compare our method with the method proposed by 

(Barreto J, 2005) adding RANSAC loop at the beginning.  

 

Method 

Data 

RANSAC based Our proposed 

Mean STD Mean STD 

10% 1.359 0.935 1.193 0.877 

20% 1.572 1.289 1.371 1.113 

30% 1.875 2.158 1.687 1.864 

Table 1. Comparison of estimation results of the two methods 

under different percentage of outliers 

 

The mean and standard deviation of distance from point to 

epipolar line is listed in Table 1, from which we can see that 

under the condition of high level of outliers and false matches 
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in the test dataset, the proposed method can eliminate the 

potential outliers to a certain extent, thus reducing its influence 

on the estimation results of the radial fundamental matrix. We 

define distortion parameter error as: 

true
error

true

(%) 100%
 





  . 

 

 
Fig1 Distortion Parameter Error varying with respect to 

Gaussian Noise 

In the second group, we test distortion parameter error changing 

with respect to varying noise level. A set of different types of 

Gaussian noise are added to the image pairs to determine their 

effects on the estimation of the fundamental matrix and 

distortion parameters, whose means is 0 and variances varying 

from 0.5 to 2.5. 

 

The result in Fig.1 shows that distortion parameter error 

increases with the increase of noise level, while the stability is 

on the decline. But when the noise standard deviation is less 

than 2.5 pixel, the proposed method could get high accuracy 

estimation of radial distortion parameter. After all, compared 

with methods proposed by (Barreto J, 2005), our method turns 

out to be more robust to the noise and outliers. When there are 

severe noise or outliers, the errors of our method are smaller. In 

other words, the proposed method could cope with outliers 

effectively，and is better than RANSAC based method. 

 

2.3.2 Real image data: In the real image experiment, we test 

our method with image dataset downloaded from the internet. 

The image sequences is shown in Fig2. 

 

 
Figure 2 Image sequences 

 

For each image, sift features are extracted by SIFTGPU and 

then the nearest neighbour method is used to match the feature 

points for each pair of images. Given these preliminary matches, 

we can perform the computation of the radial distortion matrix, 

which can serve as initialization for the following iterative 

calculation. After iterative calculation, we select 30 

correspondence inliers from the initial matching points 

according to the epipolar distance criterion. As is seen in Fig 3, 

where the green circle marks feature points, the green line 

shows the correspondence relationship of the two feature 

points。The corresponding epipolar lines are plotted in Fig 4, 

in which feature points (red diamond) are precisely located on 

the epipolar lines (green line), which means the epipolar 

geometry relation is estimated exactly. 

 

 
Figure 3 Partial correspondence inliers 

 
Figure 4 Epipolar lines and corresponding feature points 

 

As the best of our knowledge, bundler is the state of art method 

for 3D reconstruction, but not suitable to the distorted images. 

We adjust it with our proposed method to estimate the relative 

pose of the initial two images, and the result is shown in Fig 5.  

 

 
Figure 5 Sparse reconstruction result 

 

The sparse reconstruction result shows that the reconstructed 

scene is clear, the outlier is very few, and the camera pose is 

reasonable. All of these reveal the effectiveness of our method 

in structure from motion, especially the existence of radial 

distortion. 

 

The proposed method can also be applied to relative pose 

estimation for satellite imagery. The proposed method are tested 

by using World-View III imagery, Sequestered Park (MVS3D 

Mapping, 2016). 30 correspondence inliers are shown in Figure 

6, while the corresponding epipolar lines are plotted in Figure 7. 

As is illustrated, feature points (red diamond) are precisely 

located on the epipolar lines (green line), which means that the 

relative pose of the two cameras are estimated accurately. 

 

 
Figure 6 Partial correspondence inliers of satellite imagery 
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Figure 7 Epipolar lines and corresponding feature points of 

satellite imagery 

 

3. CONCLUSIONS 

This paper presented a new robust method to estimate the 

fundamental matrix with radial distortion and perform outliers 

removing simultaneously. By multiplying a weighted matrix, 

which is updated by calculating the distances between the 

matching points and the corresponding epipolar lines, to the 

coefficient matrix, the proposed method makes the SVD based 

solutions more robust, and retain its original characteristics such 

as fast, global convergence and numerical stability. The 

experiment results show the effectiveness and robustness of our 

method. With our solvers, the estimation result of radial 

fundamental matrix could be served as the initialization for 

structure from motion. 
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