
WATER MAPPING USING MULTISPECTRAL AIRBORNE LIDAR DATA

Wai Yeung Yan1,∗, Ahmed Shaker1, Paul E. LaRocque2

1 Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
(waiyeung.yan, ahmed.shaker)@ryerson.ca

2 Teledyne Optech, 300 Interchange Way, Vaughan, ON L4K 5Z8, Canada - paul.larocque@teledyne.com

Commission III, WG III/5

KEY WORDS: Land Cover Classification, Multispectral LiDAR, Optech Titan, Point Cloud Processing, SLIER

ABSTRACT:

This study investigates the use of the world’s first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne
Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment.
Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of
them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of
the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the
drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using
multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data
selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split
the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER)
to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the
multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested
with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96%.

1. INTRODUCTION

Water has critical implications for ecosystem function and bio-
sphere atmospheric interactions, and is one of the treasurable re-
sources of which to support a variety of human and economic ac-
tivities (Gleick, 1996). Since the amount of water appearance is
subject to climatic variation, tidal influence and seasonal phenol-
ogy, precise delineation of water region and its associated bound-
ary pose considerable challenges, particularly for large spatial ex-
tent. With the emergence of satellite remote sensing, mapping
and monitoring different types of water bodies, such as inland
channel, delta, coastal zone and lake, turns to be practically fea-
sible through such a top-down image capturing approach. Opti-
cal satellite remote sensing has been demonstrated as an efficient
solution to delineate open water region (McFeeters, 1996), moni-
tor evapotranspiration of water resources (Anderson et al., 2012),
estimate water quality (Brando and Dekker, 2003), assess wa-
ter erosion (Vrieling, 2006), monitor lake shrinkage / expansion
(Jepsen et al., 2013) through reaping the benefits of the multi-
spectral image dataset and its extensive coverage.

The widely adopted technique to detect water bodies within the
remote sensing image scene mainly utilizes the normalized dif-
ference water index (NDWI) derived from the green and near in-
frared image bands (Gao, 1996) or the near infrared and short-
wave infrared image bands (McFeeters, 1996). Such an image
ratioing approach can aid in enhancing the water regions being
isolated from the surrounding vegetation and land features. De-
spite the successful use of optical remote sensing image for water
region mapping, there still exist certain limitations and drawbacks
that require further research effort. First, optical satellite remote
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sensing can only provide a two dimensional image scene, un-
less stereoscopic data acquisition is adopted (Shaker et al., 2010).
Even if stereo satellite imagery is available, it is mostly impossi-
ble to unveil the depth of water columns and further derive infor-
mation such as lake volume, channel cross section, seabed prop-
erties, etc. Second, though optical remote sensing can offer a
wide coverage of spatial extent, the need of having a fine scale
data product, such as shoreline, river boundary, etc. has been
sought (Malinowski et al., 2017). Lastly, the drawback of shad-
owing effect and relief displacement in optical imagery cause se-
rious analytical burden (Yan et al., 2015), particularly when deal-
ing with those water bodies partially covered by forest canopies
or situated nearby elevated features.

To tackle these limitations, the research community has explored
the use of Light Detection and Ranging (LiDAR) techniques to
cope with these issues during the last decade. An airborne LiDAR
system is capable of emitting eye-safe, narrow-beam laser pulses
from the aircraft and records the laser signal strength backscat-
tered from the Earth’s topography. Through computing the time
of travel for each of the laser pulses, the instantaneous distance
between the LiDAR system and the backscattered surface can be
determined, which can subsequently help to derive the 3D coor-
dinates of each backscattered laser pulse. As a result, airborne
LiDAR can provide a dense high resolution 3D data point cloud
that can capture both upper- and understory of tree canopies as
well as the water surface and its bottom, depending on the laser
wavelength being used. Applications of LiDAR toward water-
related studies first come along with airborne LiDAR bathymetry
systems, such as Optech’s SHOALS, that mainly operates with
green laser channel (532 nm) with a Nd:YAG near-infrared (NIR)
laser channel (1064 nm) and a “Raman” receiver that is capa-
ble of collecting the wavelength of 640 nm arising from the 532
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nm green beam (Guenther et al., 1996; Irish and Lillycrop, 1999;
Wang and Philpot, 2007). Depending on the water depth and the
instantaneous water condition, the bathymetric LiDAR system is
capable of providing multiple returns along the water column,
i.e. from water surface to sea bottom. By measuring the returns
from these two water layers, the water depth can be estimated af-
ter implementing certain data correction mechanism to readjust
the bending effect of laser beams and retrieve the sea bottom re-
flectance (Wang and Philpot, 2007).

In 2014, Teledyne Optech launched the world’s first multispectral
airborne LiDAR system, named Optech Titan, that was equipped
with three laser channels operating at 532 nm, 1064 nm and 1550
nm wavelength. Such a breakthrough in LiDAR system develop-
ment opens new door in many remote sensing applications, im-
proves the derived product accuracy and potentially enhances the
automation of data processing (Fernandez-Diaz et al., 2016). In
this study, we explore the use of such latest multispectral airborne
LiDAR technology for water region mapping. Although there ex-
ist a number of recent attempts exploring the use of monochro-
matic airborne LiDAR system to delineate land and water re-
gions Brzank et al. (2008); Yuan and Sarma (2011); Yousef et
al. (2014), the majority of these existing studies have certain con-
straints and limitations in terms of data requirement or assump-
tions towards the water environment. Therefore, it is desired to
develop a robust method that can handle most of the land-water
environments with minimum manual intervention. The rest of the
paper is organized as follows. In section 2, we present the overall
workflow of the automatic land-water classification using multi-
spectral LiDAR data. In section 3, we present two testing datasets
collected by the Optech Titan and the results are presented in sec-
tion 4. Finally, the concluding remarks together with the further
work are drawn in section 5.

2. METHODOLOGY

Fig. 1 shows the overall workflow of the proposed automatic
land-water classification algorithm. The classification process
first starts with reading the n channels of LiDAR data files, usu-
ally in las or ASCII format, before implementation. Those data
fields required to be read includes x, y, z, intensity, number of
returns, total number of returns, scanning direction and edge of
flight line. All these parameters can be stored in a data array so
as to serve the subsequent classification purpose. A core chan-
nel should be identified so that the corresponding values from the
rest of the two other channels can be assigned accordingly. Once
the data import is accomplished, user can select either one of the
two data training approaches (Gaussian mixture model (GMM)
or Scan line intensity elevation ratio (SLIER) approach) for train-
ing site selection. Once the training areas for land and water are
identified, feature vectors such as normalized difference feature
indices (NDFIs), elevation variation, intensity variation, can be
computed using the three data channels so that they can be used
to serve the log-likelihood computation. As a result, each LiDAR
data point can be assigned with a posterior probability, where
the data point can be labelled as either land or water by taking
the maximum probability. Post-classification enhancement can
be implemented to help improving the classification result.

2.1 Data Training

2.1.1 GMM Approach With the LiDAR data being imported,
the first step is to plot the histogram for the data of the core chan-
nel. This method works well if the study area has a significant
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Figure 1. Overall workflow for automatic land-water
classification.

difference of elevation/intensity between the land and water fea-
tures. Depending on the study area and the dataset, either the
“intensity” or “z-coordinate” field is used to generate the inten-
sity or elevation histogram. The use of last return works well in
certain dataset; however, all the data points are recommended to
be used to generate the histogram in general. GMM can be run to
perform fitting for the generated histogram. The number of Gaus-
sian components being fitted can be determined using the model
selection methods such as Bayesian information criterion (BIC),
Akaike information criterion (AIC), or manual input. Finally, the
first two Gaussian components, which should in most cases rep-
resent the water surface and the land surface, can be separated by
computing the intersection of the two adjacent Gaussian compo-
nents. After the intersection point between two adjacent Gaussian
components being located (either for an intensity value or an el-
evation value), all the LiDAR data points in the core channel are
split based on this value. For those data points with value lower
than this identified threshold, they are preliminarily identified as
water bodies; else, they are identified as ground surface.

2.1.2 SLIER Approach The second method makes use of the
characteristics of water bodies (especially in coastal area with wa-
ter turbulence) which has high variance of intensity values in the
LiDAR data channel along each scan line, comparing to those
of the land features. The process first reads the LiDAR data file
scan line by scan line (sl). Based on the use of the field “scan
direction” and/or “edge of flight line”, all the data points in each
scan line are stored. Although the “edge flight line” supposes to
provide a hint for the turning direction of scanning, the proposed
method mainly relies on reading the scanning direction in order to
look for a complete scan line. Subsequently, standard deviation is
computed individually for the elevation value and intensity value,
named σE , σI respectively, along each scan line. By dividing the
σE over σI , a new index, named it as scan line elevation-intensity
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ratio (SLIER), is being developed.

SLIER =
σE

σI
× cos θ × Nl

nl
, ∀sl ∈ L (1)

where θ is the scan angle, Nl is the maximum number of points
along all the scan lines and nl is the number of points in the cur-
rent scan line. With SLIER being computed along each scan line,
it is obvious that water bodies always have very high SLIER value
comparing to the land features, since water bodies usually have
very high variance of intensity value with a relatively flat sur-
face. In this regard, there exist a high separability between land
and water features in terms of the SLIER value. Since the water
bodies usually have high variance of intensity value, which may
degrade the use of intensity value for classification. Therefore,
right before using the SLIER to preliminarily split the land and
water features, data correction should be implemented to remove
those high peaks of intensity values found on the water bodies
due to the appearance of turbulence.

These high peak values, or deemed as outliers in the data, can be
identified by computing the Mahalanobis distance through using
the intensity value and the SLIER value. The equation of the
Mahalanobis distance can be found in the below equation:

D =
√

(xj − µ)TV −1
j (xj − µ) (2)

where xj is a 2 by 1 matrix storing the intensity and SLIER value
of LiDAR data point j, µ is a 2 by 1 matrix having the mean
value of intensity and SLIER computed for all the LiDAR data
points, where Vj is a 2 by 2 covariance matrix computed using
the intensity and SLIER values. With two variables having a con-
fidence level of 95%, the chi-square value is 5.99, and thus the
square root of it is 2.45. With any Mahalanobis distance less than
2.45, they are treated as outlier (high intensity peak value on wa-
ter bodies), and they can be assigned with either an extreme low
value (say 1) or remove it from the subsequent calculation.

After removing those high peak intensity values found on the wa-
ter bodies, user can either manually define a threshold percent-
age in SLIER (for instance top 20% of SLIER), or similar to
Method 1, use GMM fitted (SLIER) histogram to look for an
optimal threshold to preliminarily separate the land and water
features. With all the potential water data points being identi-
fied using SLIER, the standard deviation (σ(w)

E ) and mean (µ(w)
E )

elevation values of the potential water data points are being com-
puted. Then a preliminary classification can be conducted using
the elevation value, regardless of data training method 1 or 2. For
all data points d in L,

f(x) =

{
water if d(E) < µ

(w)
E + 2σ

(w)
E ,

land if d(E) ≥ µ(w)
E + 2σ

(w)
E .

(3)

2.2 Land-Water Classification

After all the LiDAR data points are preliminarily split into ei-
ther land or water class, the process carries on by preparing and
creating feature spaces. A number of features are generated, de-
pending on the study area, as an input to serve the subsequent
supervised classification. Those features include elevation, ele-
vation variation, intensity, intensity variation, number of returns
and NDFIs. For those features, including elevation, intensity and
number of returns, they are already embedded in the data array

through reading the las files during the data import stage. The rest
of the parameters, including elevation variation, intensity varia-
tion and NDFIs, requires further computational process. Since
the computation of elevation variation and intensity variation of
each data point first requires obtaining the (elevation or intensity)
information from the surrounding data points, thus, a kd-tree data
structure is first built for the core channel in order to speed up the
data searching. The searching radius for building the kd-tree is set
to be twice of the mean point spacing. Once the kd-tree is built,
the intensity variation and elevation variation can be computed
by searching the corresponding intensity or elevation values with
respect to the surrounding K points. The equation for computing
the elevation variation can be found as follow:-

σ2
E =

1

K
[(E1−µE)

2+· · ·+(EK−µE)
2], ∀k ∈ 1 · · ·K (4)

where e refers to the elevation, σ2
e and µe refers to the elevation

variation and mean elevation value, respectively, with respect to
the surrounding K points. Similarly, the intensity variation can
be computed using the above equation by replacing the elevation
value by the intensity value I , as follow:

σ2
I =

1

K
[(I1−µI)

2 + · · ·+(IK −µI)
2], ∀k ∈ 1 · · ·K (5)

Regarding the NDFIs, the intensity values of the rest of the two
channels, aside from the core channel, should be used. Similar to
the abovementioned process, kd-tree should be first constructed
for the rest of the n-1 channels with the recommended searching
radius. Then, the intensity value of the nearest data point from
n-1 channel can be assigned to each of the data point the core
channel. For instance, if the multispectral airborne LiDAR data
has three channels (channel 1 = 1550 nm, channel 2 = 1064 nm
and channel 3 = 532 nm) and channel 2 is selected as the core
channel, the three NDFIs can be computed as follows:

NDFI1064−532 =
I1064 − I532
I1064 + I532

(6)

NDFI1550−1064 =
I1550 − I1064
I1550 + I1064

(7)

NDFI1550−532 =
I1550 − I532
I1550 + I532

(8)

As a result of the abovementioned process, each LiDAR data
point in the core channel has the following feature:- elevation,
elevation variation, intensity, intensity variation, number of re-
turns, and three NDFIs, where these feature sets are normalized
based on Z-score prior to classification. User can choose all of
the features or selected features for the supervised classification.
After user selects their own features being used for the subse-
quent classification, a maximum likelihood classification is im-
plemented to estimate the posterior probability of the land and
water data points as preliminarily separated in the abovemen-
tioned steps. The computation of the posterior probability can
be found as follow:-

P (X|ωi) =
1

(2π)
n
2 |Vi|

1
2

exp
[
− 1

2
(X −Mi)

TV −1
i (X −Mi)

]
(9)

where P (X|ωi) refers to the posterior probability of data point
X (arranged in an array based on the selected features) belonging
to the class ωi, and Vi and Mi are the covariance matrix and the
mean vector of class ωi, respectively, computed using the features
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selected as aforementioned. The posterior probability should be
computed for the two classes, i.e. water (ωw) and land (ωl). As-
sign data point X to land if P (X|ωl) > P (X|ωw); else, assign
data point X to water if P (X|ωw) > P (X|ωl).

An enhanced version of the classification can be implemented us-
ing Bootstrap aggregating (Bagging) by splitting the training data
(both land and water class) into n portions evenly. For instance,
if there exist 3 million points for the LiDAR data, where the land
and water are preliminarily split into 2 million points and 1 mil-
lion points based on the GMM fitting. In this case, bagging can
be implemented by dividing the 2 million points into n portions
for the land with each 200K points (if n = 10) and 1 million points
into 100K points for the water class. These individual portion of
land and water class are trained separately using the maximum
likelihood. As a result, each data point is given with ten classifi-
cation results, and a majority voting mechanism is used to label
the final class for each data point within these ten classification
results. Regardless of using a single classifier or a bagging clas-
sifier, each data point must be labelled with either land or water.
To further improve the classification accuracy, two procedures
are proposed in the final stage in order to fix or erase those mis-
classified points.

2.3 Post-classification enhancement

Two post-classification enhancement procedures are presented,
where user can either select running both procedures or either one
of them. Regardless of the post-classification enhancement pro-
cedures being used, a 3D majority filter is first implemented on
the classification result. A kd-tree data structure is first built on
the classified LiDAR data points in order to speed up the neigh-
borhood searching. In each of the classified data points, if the ma-
jority of the neighborhood are classified as a specific class where
the current data point is classified as an opposite class, such data
point should be labelled in a reverse way.

The second post-classification enhancement mechanism is based
on the use of the elevation features. With the classification re-
sults of land and water classes, the mean (µE) and standard de-
viation (σE) of the elevation are computed individually for the
two classes. Then, we define two thresholds based on these four
values using the following equations:-

Tw = µ
(w)
E + a× σ(w)

E (10)

Tl = µ
(l)
E + a× σ(l)

E (11)

With any data points being classified as land and its elevation val-
ues is lower than Tw, then such point should be labelled as water.
With any data points being classified as water and its elevation
value is higher than Tl, then such point should be labelled as wa-
ter. The number of value a is recommended to be set from 0.5 to
2. Regardless of the enhancement method, user can have an op-
tion to select either running the post-classification enhancement
procedure or not, depending on the classification result found.

3. EXPERIMENTAL WORK

The aforementioned data processing workflow was tested with
two LiDAR datasets collected by Optech Titan covering different
land-water scenarios, including shore and inland river environ-
ment during 2015 to 2016. The first dataset was collected nearby
Bowmanville, Ontario, Canada which is close to Lake Ontario,

where the second dataset was collected for the Rouge river lo-
cated south west of Pickering (see Fig. 2). Both of the datasets
were collected with low flying altitude (< 500 m), high pulse
repetition frequency (100 kHz to 225 kHz) and scan frequency
(35 to 50 Hz), resulting in a high mean point density for the two
datasets (> 10 points /m2). One should note that all these datasets
are acquired by two different versions of the Optech Titan sensor,
where only two LiDAR data channels (channel 2 and 3) are avail-
able for the first dataset (Bowmanville) and three data channels
are available for the Rouge river (Pickering) dataset.

Figure 2. Study Area.

As shown in Fig. 2, the first dataset located nearby Bowmanville
was collected parallel to the shore. Although channel 1 (1550 nm)
is unavailable in this dataset, the intensity value of both channel
2 (1064 nm) and channel 3 (532 nm) ranges from 0 to 4096 cov-
ering different types of land features including built-up features,
tree canopies, grass cover and road. The elevation varies from 30
m to 82 m in channel 2, while the lowest elevation of channel 3
yields down to 28 m due to the laser penetration to the seabed.
The number of points stored in channel 2 and 3 are 12.6 million
and 21.3 million, respectively, with an extent approximately cov-
ering 0.2 km by 6 km.

The second dataset was collected along the Rouge river situated
nearby the Pickering region. Similar to the first dataset, all the
three LiDAR data channels include a 12-bit intensity data. Nev-
ertheless, channel 1 (1550 nm) and channel 2 (1064 nm) do not
have sufficient data returns along the river, leaving void data hole
in these two channels. The elevation varies from 29 m to 81 m
in channel 3 covering the tree canopies, water surface and the
seabed. The number of points stored in channel 1 to 3 are 8.8
million, 10.4 million and 10.8 million, respectively. The spatial
extent of the dataset is approximately 0.27 km by 2.1 km.

Both LiDAR datasets were processed with the aforementioned
workflow. The first dataset was processed with the SLIER method
due to its complete coverage on part of the Lake region, while the
second dataset was processed with the GMM method based on
the use of intensity histogram generated from channel 3 due to
its partial coverage on the Rouge river. Reference aerial photos
were used to digitized the boundary of land and water in order to
provide a ground truth to perform accuracy assessment. The ex-
perimental work conducted in both case studies compare the use
of multispectral LiDAR intensity data in order to demonstrate the
capability of adding additional laser channels to aid in improving
the classification accuracy.
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Figure 3. First dataset - Bowmanville (from top to bottom): LiDAR elevation displayed of channel 2 and 3, LiDAR intensity of
channel 2 and 3 and classification result (green = land, blue = water).

Figure 4. Second dataset - Rouge river (from top to bottom): LiDAR elevation displayed of channel 1 to 3, LiDAR intensity of
channel 1 to 3 and classification result (green = land, blue = water).

4. RESULTS AND DISCUSSION

In the first dataset (Bowmanville), the result derived from channel
3 as core channel (i.e. assigning the intensity channel 2’s value to
channel 3) yielded to an overall accuracy over 97.1%, where the
feature sets include the intensity values from the two channels,
NDFI, elevation, intensity variation, elevation variation and num-
ber of returns. The precision and recall of both land are respec-
tively ranging from 95.7% and 96.4%, while the respective val-
ues are 97.9% and 97.4% for the water bodies. As a benchmark
for comparison, we also implemented the classification using the

information acquired from purely channel 2 or 3 (i.e., intensity,
elevation, intensity variation, elevation variation and number of
returns), the overall accuracy was 96.6% and 96.9%. One should
note that there exists a significant elevation difference between
the land and water region in this study area. As a result, the use
of monochromatic LiDAR data to serve the land-water classifica-
tion can yield a high accuracy, though combining the dual chan-
nels can slightly improve the result (by 0.2% to 0.5%).

In the second dataset (Rouge river), we selected channel 3 as
core channel to perform the classification due to insufficient data
point falling along the Rouge river in channel 1 and 2. In this
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experimental trial, we compared the results generated from us-
ing 1) all return and last return, 2) other two channels’ intensity
information, and 3) post-classification enhancement mechanism
as suggested in Eqs. 10 and 11. If all the LiDAR returns were
used, the classification accuracy yielded 59.3% with all the fea-
ture sets being used. An improvement of 14.1% can be achieved
when the post-classification enhancement mechanism was imple-
mented. However, if only the last returns were used, the over-
all accuracy yielded 93.9% when the post-classification enhance-
ment mechanism was off and it improved up to 96.5% when the
post-classification enhancement was implemented. If only the
channel 3’s intensity and elevation were used for classification,
the overall accuracy was 92.9% and 96%, respectively, with or
without running the post-classification enhancement. This case
study demonstrates that the use of last return can provide good
separability. Also, adding the multispectral LiDAR intensity data
can improve the result by 0.5% to 1%. In addition, the proposed
post-classification enhancement mechanism can significantly en-
hance the classification accuracy regardless of the type of data
points or feature sets being used.

5. CONCLUSIONS

A comprehensive land-water classification workflow is presented
which makes best use of both radiometric and geometric LiDAR
data features to support the classification capability. Two auto-
matic data training mechanisms, i.e. GMM approach and SLIER
approach, are proposed to deal with either river or shore environ-
ment. In addition, optional post-classification enhancement step
can be implemented to improve the classification accuracy. In
our experimental trials, both case studies yielded an overall accu-
racy better than 96%. We also examined the use of different fea-
ture sets derived from the multispectral LiDAR intensity and the
post-classification enhancement mechanism, which can help to
improve the classification accuracy. Depending on the study en-
vironment, optional settings, such as selection of all/last return or
implementation of post-classification enhancement mechanism,
are provided to the end-users to improve the land-water classifi-
cation result. The development of multispectral LiDAR certainly
enhances the data collection capability under different environ-
ment. In addition, the fruitful spectral information provided not
only increases the classification accuracy but also the robustness
of object extraction and surface classification. In near future, the
proposed workflow will be tested with other challenging shore
area, such as delta wetland, rocky shore and shore with land de-
pression, etc., in order to further demonstrate the merit of using
multispectral LiDAR data.

ACKNOWLEDGEMENTS

This study is financially supported by a three-year Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
Collaborative Research Grant (CRD) and Teledyne Optech. The
authors would like to express their appreciation to the following
individuals who brought in many illuminating discussions during
the study, including Mr. Michael Sitar and Mr. Alex Yeryomin.

REFERENCES

Anderson, M. C., Allen, R. G., Morse, A. and Kustas, W. P., 2012.
Use of Landsat thermal imagery in monitoring evapotranspiration
and managing water resources. Remote Sensing of Environment
122, pp. 50–65.

Brando, V. E. and Dekker, A. G., 2003. Satellite hyperspectral
remote sensing for estimating estuarine and coastal water qual-
ity. IEEE Transactions on Geoscience and Remote Sensing 41(6),
pp. 1378–1387.

Brzank, A., Heipke, C., Goepfert, J. and Soergel, U., 2008. As-
pects of generating precise digital terrain models in the Wadden
Sea from LiDAR – water classification and structure line extrac-
tion. ISPRS Journal of Photogrammetry and Remote Sensing
63(5), pp. 510–528.

Fernandez-Diaz, J. C., Carter, W. E., Glennie, C., Shrestha, R. L.,
Pan, Z., Ekhtari, N., Singhania, A., Hauser, D. and Sartori, M.,
2016. Capability assessment and performance metrics for the
Titan multispectral mapping LiDAR. Remote Sensing 8(11),
pp. 936.

Gao, B.-C., 1996. NDWI – A normalized difference water index
for remote sensing of vegetation liquid water from space. Remote
Sensing of Environment 58(3), pp. 257–266.

Gleick, P. H., 1996. Basic water requirements for human activi-
ties: meeting basic needs. Water International 21(2), pp. 83–92.

Guenther, G. C., Thomas, R. W. and LaRocque, P. E., 1996.
Design considerations for achieving high accuracy with the
SHOALS bathymetric lidar system. In: CIS Selected Papers:
Laser Remote Sensing of Natural Waters: From Theory to Prac-
tice, Vol. 2964, International Society for Optics and Photonics,
pp. 54–72.

Irish, J. L. and Lillycrop, W. J., 1999. Scanning laser mapping
of the coastal zone: The SHOALS system. ISPRS Journal of
Photogrammetry and Remote Sensing 54(2), pp. 123–129.

Jepsen, S. M., Voss, C. I., Walvoord, M. A., Minsley, B. J. and
Rover, J., 2013. Linkages between lake shrinkage/expansion
and sublacustrine permafrost distribution determined from re-
mote sensing of interior Alaska, USA. Geophysical Research
Letters 40(5), pp. 882–887.

Malinowski, R., Groom, G. B., Heckrath, G. and Schwanghart,
W., 2017. Do remote sensing mapping practices adequately ad-
dress localized flooding? A critical overview. Springer Science
Reviews pp. 1–17.

McFeeters, S. K., 1996. The use of the Normalized Difference
Water Index (NDWI) in the delineation of open water features.
International Journal of Remote Sensing 17(7), pp. 1425–1432.

Shaker, A., Yan, W. Y. and Easa, S., 2010. Using stereo satellite
imagery for topographic and transportation applications: an ac-
curacy assessment. GIScience & Remote Sensing 47(3), pp. 321–
337.

Vrieling, A., 2006. Satellite remote sensing for water erosion
assessment: a review. Catena 65(1), pp. 2–18.

Wang, C.-K. and Philpot, W. D., 2007. Using airborne bathymet-
ric lidar to detect bottom type variation in shallow waters. Remote
Sensing of Environment 106(1), pp. 123–135.

Yan, W. Y., Shaker, A. and El-Ashmawy, N., 2015. Urban land
cover classification using airborne LiDAR data: a review. Remote
Sensing of Environment 158, pp. 295–310.

Yousef, A., Iftekharuddin, K. M. and Karim, M. A., 2014. Shore-
line extraction from light detection and ranging digital eleva-
tion model data and aerial images. Optical Engineering 53(1),
pp. 011006–011006.

Yuan, X. and Sarma, V., 2011. Automatic urban water-body de-
tection and segmentation from sparse ALSM data via spatially
constrained model-driven clustering. IEEE Geoscience and Re-
mote Sensing Letters 8(1), pp. 73–77.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2047-2018 | © Authors 2018. CC BY 4.0 License.

 
2052


	INTRODUCTION
	METHODOLOGY
	Data Training
	GMM Approach
	SLIER Approach

	Land-Water Classification
	Post-classification enhancement

	EXPERIMENTAL WORK
	RESULTS AND DISCUSSION
	CONCLUSIONS



