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ABSTRACT: 

 

Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can 

provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic 

are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency 

subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and 

diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale 

operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to 

enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. 

Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is 

very effective for built-up area detection. 

 

 

1. INTRODUCTION 

In recent years, built-up area detection from high-resolution 

satellite images (HRSI) has attracted increasing attention 

because HRSI can provide more detailed object information; 

therefore, the finer-scale built-up areas can be detected and 

more accurate boundary can also be obtained. However, built-

up areas are compound geographical objects consisting of 

different types of man-made structures, and thus the textural and 

structural features in HRSI become clearer as well as more 

complex due to the increased spatial resolution, which makes it 

more challenging to accurately detect built-up areas in HRSI 

than in medium- and low-resolution images. 

 

Many methods have been proposed to model the textural and 

structural patterns for built-up area detection in HRSI. A built-

up presence index (PanTex) was constructed based on 

anisotropic rotation-invariant textural measures by the gray-

level co-occurrence matrix (GLCM) to describe the textural 

features of panchromatic satellite data for the discrimination of 

built-up areas (Pesaresi et al., 2008). However, PanTex is 

suitable for satellite images with a resolution about 5m (e.g. 

SPOT-5), rather than higher resolution.  

 

With the improvement of spatial resolution, it becomes more 

difficult to accurately detect built-up areas due to their spectral 

confusion and spatial complexity. Much effort has been made to 

overcome this issue. The local feature points based on Gabor 

filters were used to locate the buildings followed by spatial 

voting to achieve the detection of urban areas (Sirmacek and 

Ünsalan, 2010). To better locate built-up areas, corner points 

and straight lines were employed to indicate the existence of 

building features and the spatial voting algorithm was also used 

for modeling their spatial distribution (Tao et al., 2013; Chen et 

al., 2016; Ning and Lin, 2017). However, using only local 

corner or line features are not sufficient to discriminate between 

built-up and non-built-up areas in complex scenes. Also, the 

spatial voting is a global algorithm and the computing time will 

increase sharply when the number of feature points or lines is 

large (Li et al., 2015).  

 

In this paper, we introduce multi-resolution wavelet transform 

and local spatial statistics to model the spatial patterns of built-

up areas in HRSIs. By multi-resolution wavelet decomposition, 

the high-frequency subbands representing the detail information 

were extracted and fused to construct a saliency map, which was 

then further modulated and enhanced by Getis-Ord statistic. 

Based on the derived saliency map, an adaptive threshold 

technique is utilized to achieve the detection of built-up areas. 

 

2. METHODOLOGY 

2.1 Feature Representation Based on Wavelet Transform 

In this study, wavelet transform (WT), a well-known theory in 

signal processing, is used to model the spatial textures and 

structural features of built-up areas in HRSI. The input image 

can be decomposed into a low-frequency approximation and its 

high-frequency detail information at a coarser spatial resolution. 

Give an image f (x,y) at spatial resolution L, the decomposition 

process can be expressed as follows (İmamoğlu et al., 2012). 

 

[ , , , ] ( )L L L LA H V D WT f                      (1) 

 

where integer L is a decomposition level; AL is the low- 

frequency approximation component; HL, VL and DL represent 

the high-frequency detail coefficients of three different 

directions (horizontal, vertical and diagonal, respectively).  

 

In our model, 3-level decomposition by WT is used for an input 

image, and the detail information at three levels are extracted to 

generated feature maps. It should be noted that 9 maps will be 

derived by this procedure, because it includes three directions at 

each level. To integrate these information at multiple levels and 

in multiple directions, a feature fusion method is further 
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introduced to obtain one feature map by utilizing two 

mathematical operations. More specifically, the fusion method 

is implemented as follows. 

 

( , ) max{ ( , ), ( , ), ( , )}L L L LI x y H x y V x y D x y   (2) 

 

Next, to take advantage of the multi-scale features of built-up 

objects, the high-frequency detail information at three levels are 

then combined into one feature map by the following across-

scale addition operation 

 

3

1
L

L
I I


                                       (3) 

 

where    stands for across-scale addition, which first 

interpolate IL (L=1, 2, 3) to have the same size with the original 

input image and then implement a point-to-point arithmetic 

addition operation.  

 

By now, an integrated feature map has been generated which 

enables the built-up areas to stand out from their background. 

Thus, it can also be referred to as a saliency map from the 

perspective of visual saliency in computer vision. 

 

2.2 Feature Enhancing Using Local Spatial Statistic 

In order to enhance the saliency in built-up areas while 

suppressing it in non-built-up areas, this paper introduces the 

well-known Getis-Ord statistic to model and modulate the 

spatial distribution of saliency values. The Getis-Ord statistic 

was originally designed to measure spatial autocorrelation in 

spatial statistics (Ord and Getis, 1995), which can be expressed 

as 

 
*( ) ( ) /i ij j jj j

G d w d x x              (4) 

 

where { ( )}ijw d  is a spatial weight matrix. In our model, we use 

symmetric binary weights, with ones assigned to all locations 

within distance d of pixel i, and zero otherwise. Here, we use 

s*s (s=2d+1) rectangular neighborhood to calculate 
*( )iG d  for 

each pixel i, and d is a pixel distance.  

 

Using Getis-Ord statistic, the saliency map can be modulated 

and the contrast between built-up and non-built-up areas can 

also be further enhanced, which would be benefical to segment 

the built-up areas by the threshold-based algorithm. 

 

2.3 Built-up Area Segmentation Using Otsu Algorithm 

Many methods have been proposed for image thresholding, and 

among them, Otsu algorithm is an adaptive threshold technique 

based on the criterion of maximum between-class variance, 

which is very suitable for binary classification. Therefore, this 

algorithm is used to select the optimal threshold for built-up 

area segmentation based on the derived saliency map. 

 

3. EXPERIMENTS AND RESULTS 

To verify the validity of the proposed method，experiments 

were conducted on two image datasets with different resolutions. 

The first dataset is from Chinese ZY-3 satellite, which was 

launched on January 9, 2012. The panchromatic band with a 

resolution of 2.1m was used. The other one is composed of 

panchromatic Quickbird images with a resolution of 0.61m. To 

quantitatively evaluate the accuracy of built-up area detection, 

three commonly used indices, that is, precision P, recall R and 

F-measure are used. More specifically,  

 

P=TP/(TP+FP)                               (5) 

 

R=TP/(TP+FN)                              (6) 

 

 F=2PR/(P+R)                               (7) 

 

where TP and FP denote the number of true built-up area pixels 

and non-built-up area pixels in the extracted built-up areas, 

respectively; FN denotes the number of true built-up area pixels 

in the extracted non-built-up areas; F is a composite indicator of 

the precision P and the recall R. 

 

In this experiment, the window size s(s=2d+1) in Getis-Ord 

statistic is the only parameter needed to be set, which 

determines in what extents or scales the local spatial 

autocorrelation information is utilized to calculate the saliency 

for each pixel; therefore, it can further affect the final detection 

result. We have test different values for parameter s on each 

image data, and the results show that the F-measure will first 

increase and then decrease as s increases from a small window 

size (e.g. s=3). Taking the first image (i.e. ZY-3-1 in Table 1) 

for example, the change curve of F-measure with s is presented 

in Figure 1, which get the peak value 0.8829 when s=39. In the 

same way, we can obtain the optimal F-measures for all the test 

images as shown in Table 1. Overall, the F-measures are all 

high for both ZY-3 and Quickbird image data. This fact indicate 

that the proposed model is very effective for the test data.  

 

 
 

Figure 1. The change of F-measure with s for ZY-3-1 image 

 

Sensor ID P R F 

ZY-3 

1 0.9172 0.8511 0.8829 

2 0.8521 0.9085 0.8794 

3 0.8644 0.8955 0.8797 

4 0.9722 0.8744 0.9207 

5 0.9694 0.8405 0.9004 

6 0.8918 0.8383 0.8642 

Quickbird 

1 0.8850 0.8231 0.8530 

2 0.7720 0.9386 0.8472 

3 0.9841 0.9298 0.9562 

4 0.7852 0.8938 0.8360 

5 0.8962 0.9327 0.9141 

6 0.7853 0.8859 0.8326 

 

Table 1. Accuracy evaluation results for the test images 
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To see the detection results more intuitively, the results of 

partial test images are shown in Figure 2 and Figure 3, where 

the first column are original images, the second column are 

ground truths and the automatic detection results are presented 

in the last column. By comparing each detection result and its 

ground truth, it can be found that the experimental results are 

very good, and they are closely approximate to their ground 

truths. What’s more, although the test images include complex 

textures and man-made structures, the detected areas are still 

complete with well-defined shape, which are beneficial to 

further raster-to-vector conversion in some real applications. 

 

   

   

   

Original Images Ground Truths Detection Results 

 

Figure 2. Built-up area detection results for part of the ZY-3 images 
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Original Images Ground Truths Detection Results 

 

Figure 3. Built-up area detection results for part of the Quickbird images 

 

 

4. CONCLUSIONS 

In this study, multi-resolution wavelet transform was used to 

model the spatial textures and structural patterns for built-up 

area detection in HRSIs. Based on multi-scale wavelet 

decomposition, a saliency map of built-up areas was constructed 

by integrating the high-frequency detail information, and was 

further enhanced by the Getis-Ord statistic. Experimental results 

show that the proposed method is very effective for built-up 

area detection.  

 

In future work, we will focus on how to automatically determine 

the optimal parameter (i.e. window size s) in Getis-Ord statistic 

operation. In addition, more image data with different scenes 

are necessary to further verify the robustness of the proposed 

method, and the comparing experiments are also needed to 

indicate its performance. 
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