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ABSTRACT: 

A modified two-scale microwave scattering model (MTSM) was presented to describe the scattering coefficient of natural rough 

surface in this paper. In the model, the surface roughness was assumed to be Gaussian so that the surface height z(x, y) can be split 

into large-scale and small-scale components relative to the electromagnetic wavelength by the wavelet packet transform. Then, the 

Kirchhoff Model (KM) and Small Perturbation Method (SPM) were used to estimate the backscattering coefficient of the large-scale 

and small-scale roughness respectively. Moreover, the ‘tilting effect’ caused by the slope of large-scale roughness should be 

corrected when we calculated the backscattering contribution of the small-scale roughness. Backscattering coefficient of the MTSM 

was the sum of backscattering contribution of both scale roughness surface. The MTSM was tested and validated by the advanced 

integral equation model (AIEM) for dielectric randomly rough surface, the results indicated that, the MTSM accuracy were in good 

agreement with AIEM when incident angle was less than 30° (θi < 30°) and the surface roughness was small (ks = 0.354). 

* Corresponding author

1. INTRODUCTION

The research on the scattering model for the randomly rough 

surface is an important part of microwave remote sensing theory. 

Several theoretical scattering models have been proposed for 

bare soil surface in past decades (Valenzuela, 1967; Ulaby et al., 

1978; Jin, 2008). However, the scattering from a randomly 

rough surface is a very complex problem which does not admit 

exactly closed-formed solution from the Maxwell equations. 

Hence some of the approximate analytic solutions are possible 

only when the geometric scales of the surface are limited in the 

valid ranges. There are three representative approximate models: 

Kirchhoff Model (KM) (Beckmann, 1963), Small Perturbation 

Model (SPM) (Fung, 1967) and Integral Equations Model (IEM) 

(Fung, 1992). In the broad sense, KM is best suit for relatively 

rough surface (large-scale roughness surface), it is only valid 

when the electromagnetic wavelength is much smaller than the 

rough surface curvature radius. Meanwhile, the root mean 

square height (s) and the associated correlation length (l) which 

defines the surface roughness statistically are larger than the 

wavelength. SPM requires the relatively smooth surface (small-

scale roughness surface), it is only effective when both of s and 

l are smaller than the electromagnetic wavelength. However,

natural surface contains various proportion of roughness, and it

may not satisfy the ranges of validity conditions of KM or SPM.

The integral equations model (IEM) proposed by Fung (1992)

has implemented to improve ranges of applicability of the

scattering models and gets a well accuracy. The basic theory of

IEM is dividing the surface scattering field into two parts, the

one is to keep the Kirchhoff field (the near field of tangent

plane) as the initial solution, the other is to introduce the

compensation field, which used to correct the Kirchhoff field.

IEM extends the valid rang of the theoretical scattering model 

and fills up parts of the gap between KM and SPM, therefore, it 

is the most popular method used in calculation of 

electromagnetic scattering of natural surface. Later, There are 

two important improvements on IEM accomplished by Wu (Wu 

et al., 2001; 2004), which make the model more accurate in 

simulating the randomly rough surface. So IEM upgrades to 

Advanced Integral Equations Model (AIEM).  

However, natural surface may be composed with complex 

mixture of large-scale roughness and small-scale roughness, 

such as ocean surface on which the small wave covers the large 

wave, or some block of clods with small granular soil on it. So 

in order to describe the electromagnetic scattering properties of 

this two-scale rough surface, we need to calculate the scattering 

effect of both sizes of the roughness. Ulaby (1981) firstly 

presented two-scale model (TSM) and attempted to solve the 

problem. In TSM, The randomly rough surface is assumed to be 

a combination of a slowly undulating surface that satisfies the 

KM condition and a small perturbation surface for which SPM 

is valid. When the incident angle is near normal (0°<θi<25°), 

the scattering is dominated by the large-scale surface roughness. 

While at large incident angles (θi>25°), the scattering is 

dominated by small-scale surface roughness which is tilted by 

the slope of the large-scale surface roughness; So SPM is used 

to account for the tilting effect by introducing a local coordinate 

system and the scattering coefficient is calculated by 

considering both the large-scale and small-scale roughness. 

Brown proposed another two-scale model (Brown, 1978), a 

kind of Fourier function is used to transform the surface height 

to spectrum domain for a perfectly Gaussian surface, where the 

surface is filtered in its height spectral domain by a low pass 
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filter. The small-scale roughness represented by the high-

frequency spectral region and a first-order perturbation solution 

of Burrow’s model (Burrows, 1967) is an adequate description 

of its scattering properties. The large-scale roughness 

represented by the low-frequency spectral region is assumed to 

be sufficiently smooth so as to form the unperturbed surface, 

and a physical optics approaches for determining the scattering 

field. The final result is the sum of the contribution of both 

scale surface roughness.  

 

2. SURFACE ROUGHNESS DECOMPOSITION BY 

WAVELET PACKET   

2.1 Surface description 

The randomly rough surface is assumed to be a Gaussian 

stationary stochastic process. For any point (x, y) on the surface, 

its surface height (z(x, y) is statistical variable which has the 

following statistical characteristics 

 

( , ) 0E z x y                                     (1) 

2 2( , )E z x y s                                   (2) 

2

2

1 ( , )
( ( , )) exp{ }

22

z x y
p z x y

ss
                          (3) 

 

where E<> is the ensemble average; s is RMS of surface height; 

p(z(x, y)) is probability distribution function and z(x, y) obeys 

the Gaussian distribution. 

 

According to the so called composite surface scattering theory 

(Burrows, 1973) and the stochastic process theory (Mario, 1996; 

Fang, 2009), a Gaussian stationary stochastic process can be 

decomposed into two independent Gaussian stationary 

stochastic processes. So the surface height
 

z(x, y) may be 

rearranged into the following form (Fig. 1) 

 

),(),(),( yxzyxzyxz sk                (4) 

 

where zk(x, y) is the height of large-scale roughness at (x, y) and 

zs(x, y) is the height of small-scale roughness. 

 

Since zk(x, y) and zs(x, y) are independent, the two-scale surface 

height spectrum S(kx, ky) may be given as follows 

 

( , ) ( , ) ( , )x y s x y k x yS k k S k k S k k                (5) 

 

where Sk(kx, ky) and Ss(kx, ky) are the height spectrum for zk(x, y) 

and zs(x, y); kx, ky
 
are wave number of the electromagnetic field 

incident upon the rough surface along the x and y directions 

respectively.  

 

Eq. (4) and Eq. (5) along with the fact that zk(x, y) and zs(x, y) 

are zero-mean Gaussian are crucial to the development to 

follow. If z(x, y) is non-Gaussian, it is not clear that the 

densities of zk(x, y) and zs(x, y) and their derivatives can be 

uniquely defined (Beckmann, 1975). More importantly, the 

spectral dichotomy as given by Eq.(5) may be invalid. 

 
Fig.1 The decompose of two-scale roughness surface, the solid 

line represents the surface of z(x, y), and the dotted line S0 is the 

large-scale surface (zk(x, y)) in X-Z plane 

 

2.2 Surface roughness decomposition by wavelet packets 

Wavelet is a time-frequency representation that has been used 

successfully in a broad range of applications, signal analysis in 

particular (Chui, 1992; Hilton et al., 1994). Wavelet packet is 

the development of wavelet multi-resolution analysis (MRA), it 

is a generalization of the wavelet transform that allows for 

arbitrary tree-shape bandpass filtering and can be adapted to the 

characteristics of the particular signal being analyzed. 

 

The details of wavelet transform can be found in a number of 

literatures (Chui, 1992; Strang, 1996; Nielsen, 1996). In 

wavelet Multi-Resolution Analysis (MRA), the Hilbert space 

(L2(R)) is separated to the orthogonal sum of all the subspaces 

 
2 ( ) jL R W 

 

, j Z                              (6) 

 

where Wj is the subspaces of wavelet basis function φ(t). In 

order to develop the frequency resolution, we can further divide 

wavelet subspace Wj in accordance with the binary frequency 

segment. So the wavelet scaling subspace Vj and Wj can be 

jointed and represented by a new space Uj
n (n Є N). If we 

suppose Uj
0 = Vj and Uj

1 = Wj, as the formulation of orthogonal 

decomposition of L2(R), 1j j jV V W    can be written as the 

decomposition of Uj
n 

 
0 0 1

1j j jU U U                                    (7) 

 

Then, Uj
n

 
and Uj

2n are defined as the wavelet subspace of un(t) 

and u2n(t) respectively, un(t) should satisfy the following 

equations 

 

2 ( ) 2 ( ) (2 )n n

k Z

u t g k u t k


                             (8a) 

2 1( ) 2 ( ) (2 )n n

k Z

u t h k u t k



                            (8b) 

 

where g(k) and h(k) are lowpass filter coefficient and highpass 

filter coefficient, and they are related by 

 

( ) ( 1) (1 )kh k g k                                   (9) 

 

When n=0, Eq. (8) can be changed to 

 

     0 0( ) 2 ( ) (2 )
k Z

u t g k u t k


                            (10a) 
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1 0( ) 2 ( ) (2 )
k Z

u t h k u t k


                            (10b) 

 

The scaling function φ(t) and basis function ( )t  in wavelet 

MRA are as follows 

 

( ) 2 ( ) (2 )
k Z

t g k t k 


                            (11a) 

( ) 2 ( ) (2 )
k Z

t h k t k 


                            (11b) 

 

Comparing Eq. (10) with Eq. (11), we can find that u0(t) and 

u1(t) degenerated to φ(t) and ф(t) respectively. {un(t)} is called 

the orthogonal wavelet packet determined by u0(t) =φ(t). 

Therefore, the wavelet decomposition is the special column of 

wavelet packet. When n=0, we use u0(t) and u1(t) as the 

subspace of wavelet packet, the wavelet packet transform 

changes to wavelet transform. On the other hand, if we go on 

decomposing the high-frequency spectral by MRA, the wavelet 

transform becomes wavelet packet transform. 

 

There are several steps to decompose the surface roughness by 

wavelet packet in this paper. 

 

1) The random surface height z(x, y) are transformed to spectral 

domain by wavelet packet transform and the height spectral 

function is given by S(kx, ky). 

 

2) A free wave number kd is chose to split the roughness, so the 

height spectrum for zs(x, y) is Ss(kx, ky), for (|kx≥kd|∪|ky≥kd|), 

while the height spectrum for zk(x, y) is Sk(kx, ky), for 

|kx<kd|∩|ky<kd|. Then, the surface height spectrum can be 

expressed as Eq. (5). 

 

3) An inverse transform of wavelet packet is used to change 

Ss(kx, ky) to the height function zs(x, y) of small-scale roughness, 

then we judge whether the RMS height ss and correlation length 

ls of zs(x, y) are agreed with the ranges of validity of the SPM 

(kss<0.3, ss/ls<0.21) (Fung, 1974). If not, going to the step 2 

and reselecting the kd.   

 

4) When kd is determined, Ss(kx, ky) and Sk(kx, ky) can be 

calculated. Both scale of the roughness will be obtained by 

inverse transform of wavelet packet. So the surface roughness is 

divided to two parts successfully.  

 

3. THE SCATTERING COEFFICIENT OF THE MTSM 

3.1 The scattering field of two-scale model 

In this paper, the equation of far-zone of electromagnetic 

scattering is used to derive the formula of MTSM. In 

accordance with the Stratton-Chu Equation (Ulaby et al., 1981), 

the far-zone scattered electric field is given in terms of the 

tangential electric and magnetic fields by 

 
(1)( ) ( ) ( )KA SPM

pq i pq i pq i

                              (12) 

 

where ( )KA

pq i   is the scattering contribution of large-scale 

roughness at θi and 
(1) ( )SPM

pq i   is the first-order solutions 

of SPM for small-scale roughness. Because the small-scale 

roughness lay on the top of the large-scale roughness, which is 

so called ‘tilting effect’, we need to calculate the ensemble 

average of SPM to correct the ‘tilting effect’, then 

 
(1)( ) ( ) ( )KA SPM

pq i pq i pq i

                             (13) 

 

At next, we will calculate the solution of ( )KA

pq i   and 

(1) ( )SPM

pq i   respectively. 

 

3.2 Kirchhoff Scattering Field  

The KM applies tangent plane approximation to calculate the 

surface fields. This is valid if the radius of curvature is larger 

than a wavelength. When the surface roughness is large 

relatively (kl > 6 and l2 > 2.76sλ) (Ulaby et al., 1981), the KM 

reduces to the Geometric Optics Model by phase approximation, 

the backscattering coefficient is given by (Burrows, 1973) 
2

2

2 4 2

(0) tan
( ) exp( )

2 cos 2

pqKA i

pq i

im m


 




           (14) 

 

where m is the average slope and 2m s l  for the Gaussian 

surface; Гpq(0) is the Fresnel reflection coefficient in the normal 

direction (θi = 0), if p≠q, ( ) 0KA

pq i   , else Гpq(0) is given 

by 

 

 
1

(0) (0)
1

hh vv






   


                          (15) 

 

where ε is dielectric constant.  

 

When 0.05λ < s <0.15λ, l > λ and m < 0.25, the KM reduces to 

the Physic Optics Model by scalar approximation, the 

backscattering coefficient is given by (Burrows, 1973) 

 
2 2 2

2

1

( ) cos ( )exp( (2 cos ) )

(2 cos( ))
(2 sin( ),0)

!
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pq i i pq i i

n

ni

i

n
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W k

n
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






  


     (16)   

                                          

where i(2 sin ,0)nW k   is the roughness spectrum of the 

surface related to the n-th power of the surface correlation 

function by the Fourier transform. For the Gaussian surface, 

i(2 sin ,0)nW k   is  

 
22 ( sin )

(2 sin( ),0) exp{ }n i

i

kll
W k

n n


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          (17) 

 

Гpq(θi) is the Fresnel reflection coefficient and it is denoted 

 

   

2
2

2

cos sin
( )

cos sin

i i

hh i

i i

  

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 
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2

2
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In the two-scale surface, because the large-scale roughness is 

covered by small-scale roughness, the Fresnel reflection 

coefficient in KM should be modified (Valenzuela, 1978) 

 

( )[1 2 sin

( sin , ) ( , ) ]

pq pq i i

i pq

k

W u k v K u v dudv

 


 

 

   

  
            (19) 

 

where Гpq is the corrected Fresnel reflection coefficient, Kpq(u, v) 

is the KM filed coefficient, and W(u-ksinθi, v) is the roughness 

spectrum.   

 

3.3 Small Perturbation Scattering Field 

The SPM is valid for the rough surface with small RMS height 

and small slope, its effective applying range are ks<0.3, and 

s/l<0.21. According to the former analysis in Eq. (27), the first-

order solutions of SPM is given by (Ulaby, 1981) 

 
2

(1) 4 2 4( ) 8 cos ( )

(2 sin ,0)

SPM

pq i i pq i

i

k s a

W k

   




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where apq(θi) is the polarized amplitude coefficient in SPM, and 

  

2 2

1
( )

(cos sin )

s

hh i

i s i

a



  




 
                     (21a) 

2 2

2 2

sin (1 sin )
( ) ( 1)

( cos sin )

i s i

vv i s

s i s i

a
  

 
   

 
 

 
   

    (21b) 

 

In the two-scale surface, small-scale roughness lays on the 

large-scale one, so we need to correct the ‘tilting effect’. zkx and 

zky are supposed as the slope of the large-scale roughness (zk) in 

the direction of x-axis and y-axis respectively, and Pθi(zkx, zky) is 

the probability distribution function of zkx and zky. A simply 

rough surface is used to explain the probability distribution 

function by Fig. 3, in which a simple rough surface is composed 

by three lines l1, l2, l3 in a one-dimensional plane x-z, zx2 is the 

slope of l2 and P(zx2) is the probability distribution function of 

zx2. In the vertical direction ẑ , P(zx2) can be written as (Jin, 

1993) 

 

 
2 2 2 2

2

1 1 2 2 3 3

ˆ ˆˆ ˆˆ ˆ
( )

ˆ ˆ ˆˆ ˆ ˆ ˆ( )
x
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 
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1 1 2 2 3 3
ˆ ˆ ˆˆ ˆ ˆ ˆ( )L l n l n l n z                                (23) 

 

In the direction of incident θi, P(zx2) is given by 

 

2 2 2 2
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ˆ ˆ ˆ ˆˆ ˆ
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where ˆ
ik  is the unit vector in the incident direction. From Eq. 

(37) and Eq. (39), we have 

 

 2 2 2( ) cos (1 tan ) ( )i x i x i x

i

L
P z z P z

L




             (26) 

 

There are only three roughnesses in Fig. 3, so the sum of the 

probability distribution function is 1, that is  

 
3

1

( ) 1i xm

m

P z


                                 (27) 

 

Then,   

cos 1i

i

L

L
                                   (28) 

 

As a result, when it comes to the two-dimensional random 

surface, Pθi(zkx, zky) can be written as 

 

 ( , ) (1 tan ) ( , )i kx ky kx i kx kyP z z z P z z                   (29) 

 

where P(zkx, zky) is the probability distribution function of the 

large-scale roughness, and it obeys a (0, σzk
2) Gaussian 

distribution 

 
2 2

2 2

1
( , ) exp{ }

2 2

kx ky

kx ky

Zk Zk

z z
P z z

 


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So the second term in Eq. (28) is given by (Jin, 1993) 

 

(1) 4 (1)

cot

ˆ ˆ( ) ( ) ( )

(1 tan ) ( , )

i

SPM

pq i pq i

kx i kx ky kx kx

p p
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

 

 

    



 
         (31) 

 

where p̂  and pˆ  are the unit polarized vector of basic 

coordinate system and local coordinate system respectively. i   
is the local incident angle. Due to avoid self-shadowing effect, 

the integral limit of zkx in Eq. (46) is from -cotθi to ∞. 

 
Fig. 3 The probability distribution of gradient in geometric 

explanation (Jin, 1993) 

 

4 VALIDATION 

 

The AIEM, which is the improvement of IEM, was adopted to 

verify the MTSM in this paper. With the widest range of 

applicability, the AIEM is the most popular method used in 

calculating the surface scattering in contrast to other models. In 

AIEM, the single scattering term is given by: 
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where Wn(ksx-kx, ksy-ky) is the roughness spectrum of the surface 

related to the n-th power of the surface correlation function by 

the Fourier transform. fpq and Fpq are the Kirchhoff coefficient 

and the complementary field coefficient, respectively. kz = 

kcosθi; ksz = kcosθs; kx = ksinθicosφi; ksx = ksinθscosφs; ky = 

ksinθisinφi; ksy = ksinθssinφs; 

 

The inputs of simulations were set to: frequency f = 5.63 GH; 

complex dielectric constant εs=19.54+3.08i; Incident angle θi Є 

[10°, 70°]; three different Gaussian surfaces (ks= 0.354, 1.061, 

2.352; kl= 8.21) were supposed to test the MTSM respectively. 

And the choice of wave number kd for splitting the roughness in 

MTSM should satisfy the following two requirements: 

 

 5
s

s
s   ， 1.5ks                            (33a) 

0.3sks   , 1.5ks                           (33b) 

 

 
(a) 

 
(b) 

 
(c) 

 Fig. 4 Comparison of the backscattering coefficient predicated 

by the AIEM and MTSM with kl = 8.21, θi Є [10°, 70°], and εs 

= 19.54+3.08i for different roughness: (a) ks = 0.354, (b) ks = 

1.061, and (c) ks = 2.352 
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Fig. 4 shows scatter plots of backscattering coefficient estimated 

using the MTSM Versus AIEM on the three different roughness 

surfaces. The MTSM is in good agreement with the AIEM at 

small incident angles. When θi increases, the difference between 

them become larger and reach the largest value of 2.561 dB at θi 

= 60° in VV polarization. In additional, when the surface 

roughness is small (ks= 0.354), it is clear that the MTSM give 

very accurate predictions, presenting less than 0.68 dB 

difference with the AIEM both for VV and HH polarization. As 

the surface roughness increases, we see that the results of the 

MTSM move far from the AIEM, especially in Fig. 4(c), their 

difference is more than 2 dB for both polarizations when θi > 

45°. The estimation of MTSM in VV polarization is slightly 

closer to AIEM than in HH polarization, it indicates that the 

polarization manner has slightly influence on the MTSM. 

Therefore, MTSM can achieve well accuracy when both of the 

incident angle and surface roughness are small.   

 

5 CONLCUSION 

In this paper, a new model (MTSM) was proposed to describe 

the backscattering for a Gaussian-distributed rough surface. The 

surface height function z(x, y) is transformed to frequency 

region by wavelet packet, and the surface height spectrum was 

split into two parts. The large-scale roughness corresponding to 

the low frequency portion of the spectrum (k < kd), is assumed 

that the Kirchhoff Model adequately describes the scattering 

from these height excursions. The small-scale roughness is 

represented by the high frequency portion of the total height 

spectrum (k > kd), it is described by a first order SPM. The key 

parameter kd for spectral dichotomy is determined by Eq. (47). 

Moreover, the ‘tilting effect’ caused by the large-scale 

roughness was corrected, and backscattering of the MTSM is 

the sum of both scale roughness surfaces. From the results of 

the numerical experiments, the following conclusions can be 

drawn: 

 

1) It is a difficult task to measure the large-scale and small-scale 

roughness in traditional two-scale model. Wavelet packet 

transform is used to split the surface height spectrum into two 

parts, these makes the two-scale model useful in practice. 

 

2) The comparison between the simulations of AIEM shows 

that a good agreement exists between the AIEM and MTSM 

when both of the incident angle and surface roughness are small. 

The different polarization has slightly influence on the MTSM. 

 

3) It should be noted that the MTSM was established to 

describe the electromagnetic scattering properties of typically 

two-scale land surface, and it was tested using AIEM model by 

numerical simulation only, its application to natural surface and 

its ranges of validity of surface roughness remains the subject of 

further study and is ongoing. 
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