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ABSTRACT: 

 

In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the 

hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical 

levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to 

model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to 

built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The 

performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate 

that our method improves the change detection accuracy compared with the HMM-based method. 
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1. INTRODUCTION 

Urbanization has brought convenience to human living 

conditions. At the same time, it also leads to various 

environmental problems such as air pollution, water 

contamination, and local climate change, etc (Qiao et al., 2013). 

China has experienced rapid industrialization and urbanization 

since late 1970s. According to the National Bureau of Statistics 

of China 2010, urban areas have increased from 17.6% to 

46.6% during the period 1978 to 2009, mainly converted from 

agricultural land. Large amount of farmland loss due to 

urbanization not only poses a great threat to the security of food 

provision, but also lead to severe ecological system degradation 

(Song and Deng, 2014). Therefore, monitoring the conversion 

of farmland to built-up land is one of the most important issues 

of land use/land cover change (LUCC) research. 

 

Satellite remote sensing can be a powerful tool for detecting 

land use/land cover change. Most prior studies used post-

classification method to detect urbanization-induced farmland 

change with bi-temporal or multi-temporal satellite images 

(Tian et al., 2014, Kraemer et al., 2015). However, this method 

has its limitations. On one hand, the accuracy of change 

detection is totally dependent on the accuracy of individual 

classification processes. The classification errors in the initial 

classification phase are compounded, leading to an unsatisfied 

post-classification comparison result (Ridd et al., 1998). On the 

other hand, it is not easy to discriminate true changes from 

seasonal variations in the vegetation (Coppin et al., 2004). The 

uncertainty of spectral characteristics due to various crop types 

and planting patterns makes it even harder to apply a uniform 

classification method to extract farmland. 

 

Satellite image time series (SITS) record the continuous change 

process of the earth’s surface, which have been widely applied 

to monitor urban land cover conversions (Xue et al., 2014, Guo 

and Gong, 2016, Song et al., 2016). Through spectral-temporal 

trajectory analysis, real land cover changes can be separated 

from other seasonal changes. In a previous study, we proposed a 

continuous change detection and classification algorithm based 

on SITS using hidden Markov model (HMM), named HCCDC 

(Yuan et al., 2015). It demonstrated that the HMM is a powerful 

tool to distinguish changes in time series of different land cover 

types. In this study, a novel method is developed that uses a 

hierarchical hidden Markov model (HHMM) to identify areas of 

farmland occupied by built-up land.  HHMM is a generalization 

of the HMM which provides a way to model complex multi-

level sequences. It can model multi-level structures that 

naturally exist in many domains, such as speech, text, and 

handwriting, and has been extensively studied in those fields. 

However, it is rarely used to model the land use/land cover 

change process. 

 

Specifically, the objectives of this study are (1) to establish an 

HHMM that describes the farmland change process and (2) to 

derive position and timing of farmland change at a per-pixel 

basis by model inference, and (3) to apply this method in 

monitoring urbanization-induced farmland loss from MODIS 

time series.  

 

2. STUDY AREA AND DATA 

As a case study, the proposed method is applied to monitoring 

urban encroachment onto farmland in Beijing using 10-year 

MODIS time series for 2001 to 2010. As the capital city of 

China, Beijing has undergone fast urbanization in recent 

decades, where agricultural land has been declining 

dramatically every year, mostly converting to urban or related 

uses (Tian et al., 2014).  
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A total of 230 MODIS 16-day composite 250m (MOD13Q1) 

images are used for experiments. All the spectral reflectance 

bands (blue/red/NIR/MIR) are adopted. The long time span, 

frequent revisit time, high data quality, and simple data 

preprocessing make MODIS imagery suitable for long-term 

land cover change detection. Although the spatial-resolution of 

MODIS images is relatively low, they are able to validate the 

methodology.  

 

MODIS images are pre-processed to remove cloud and snow 

pixels with the VI Quality band, then Fourier regression fitting 

is implemented on each spectral band to reconstruct high-

quality time series datasets. ESA Global Land Cover 

(GlobCover) map version 2.3 for 2009 (Bontemps et al., 2015) 

is used as ancillary data for getting training samples (Figure 1). 

Assuming no farmland change has occurred in 2009, we use the 

annual time series as training samples for farmland and built-up.  

 

 

 

Figure 1. GlobCover2009 map in the study area. 

 

3. METHODOLOGY 

3.1 Hierarchical Hidden Markov Model 

The HHMM, first introduced by Fine et al (1998), is derived 

from the HMM and provides better modelling of domains with 

hierarchical structures. The HHMM generalize the standard 

HMM to include a hierarchy of hidden states. An HHMM 

consists of two kinds of states: internal states and production 

states. Each internal state has its own sub-states. An internal 

state in the high-level recursively activates one of its sub-states 

until a production state in the lowest level is reached. A 

transition between high level states is activated only when the 

lower level model reaches the final state. Observations are only 

emitted by the production states. 

 

The HHMM is able to correlate structures occurring relatively 

far apart in observation sequences, while maintaining the 

simplicity and computational tractability of simple Markov 

processes. In addition, it is capable of handling statistical 

inhomogeneity commonly exist in many complex time series 

datasets (Fine, et al., 1998). 

 

3.2 Semantic Analysis of Farmland Change Process 

Different land cover types have inherent phenological patterns, 

which cause distinct seasonal variations in the spectral-temporal 

trajectory of a pixel. According to this idea, we decompose the 

farmland change process into three hierarchical levels, as shown 

in Figure 2. Here only the change from farmland to built-up 

land is considered, but this is not the limitation of the algorithm 

itself.  

 

The top level is the land cover level, which shows annual land 

cover change, namely, unchanged farmland, farmland-to-built-

up, and unchanged built-up. The dotted lines in Fig. 1(a) 

indicate valid change directions (a change from built-up to 

farmland will not tend to occur). The second level is the 

vegetation phenology level that describes phenological phases 

of vegetation growth for each land cover type. It should be 

noted that due to the existing of different kinds of vegetation 

within each land cover type, the actual intra-annual 

phenological changes of farmland and built-up are diverse. The 

bottom level is the SITS level denoting the temporal evolution 

of the spectral reflectance or spectral index. During each 

phenological phases, time series can be considered as a stable 

signal. 

 

 

Figure 2. An illustration of the farmland change process. 
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3.3 HHMM structure Definition 

A three-level HHMM is proposed to model the multi-level 

semantic structure of farmland change process. Figure 3 

illustrates the model structure of the proposed HHMM.  

 

Level 1 is the root state 0q  that initiates a new stochastic 

sequence generation. Level 2 (the top HMM) and Level 3 (the 

bottom HMM) represent the land cover level and vegetation 

phenology level, respectively. The top HMM has two internal 

states, i.e., 
1

1q  and 
1

2q , corresponding to farmland and built-up, 

respectively. The root state always initiates 
1

1q  because the 

initial land use type of the input time series is farmland. The 

arrow lines in the top HMM represent inter-annual land cover 

changes. Once the state in the top HMM enters 
1

2q , it will stay 

in 
1

2q  and never return to 
1

1q . The states in the bottom HMM 

(except for the final state) are implicitly related to crude 

phenological phases of farmland or built-up. They are 

production states and emit observations of the satellite images. 

The final state 
2

eq  controls the termination of the stochastic 

state activation process.  

 

The same number of states is set for both bottom HMMs 

without loss of generality. A left-right model topology with no 

skip path is chosen to accommodate the intra-annual 

phenological variations. The probability of observations emitted 

from the state in the bottom HMM is modelled with a Gaussian 

mixture model (GMM), which has been proven to closely 

approximate any probability density functions (PDFs) using a 

mixture of a finite number of Gaussian components.  

 

 

Figure 3. The HHMM of depth 3 constructed for the farmland 

change process. 

 

3.4 HHMM Parameter Learning and Inference 

In addition to the model structure, an HHMM is characterized 

by the state transition probability between the internal states and 

the output probability distribution of the production states. 

According to the model definition, the vertical transition 

probabilities have been determined. In this study, the 

undetermined parameters of the HHMM are derived through the 

following three steps. 

 

1) Train two individual HMMs by Baum-Welch algorithm for 

farmland and built-up separately. Then the parameters of 

all the bottom HMMs are obtained. 

 

2) Estimate the transition probability from farmland to built-up 

according to the statistical data of the study area. In order 

to reduce omission error, this parameter is recommended to 

set higher than the estimate value. Then the transition 

matrix of the top HMM is acquired. 

 

3) Assign the corresponding parameters to the HHMM. 

 

Once the HHMM is established, we can detect farmland change 

by inferring the hidden state sequence in the top HMM that is 

most likely to generate the input SITS. First, the time series of a 

pixel is input into the HHMM. Then the most probable state in 

the top HMM at each time step is estimated by the generalized 

Viterbi algorithm. If it converts from 1

1q  to 1

2q , the pixel is 

considered to have changed from farmland to built-up. The year 

in which the state converts is the change year detected. 

 

4. EXPERIMENT AND DISCUSSION 

4.1 Experiment on Simulation Dataset 

For method validation, simulation data are adopted.  In this 

experiment, the number of states in the bottom HMM is set to 5, 

and the number of Gaussian mixture components (GMCs) is set 

to 10. 

 

The simulation dataset includes 1000 simulated changed and 

unchanged time series, separately. To generate a changed time 

series, one sample each from the training sets of farmland and 

built-up are chosen randomly at a time, and then they are 

connected end to end to construct a two-year time series. In the 

same way, unchanged farmland samples are generated as well. 

Experimental results on the dataset indicate a 95.9% change 

detection rate with a 4.4% false alarm rate.  

 

4.2 Experiment on Real Dataset 

The performance of the proposed method is evaluated on a 

validation set for different model structures. The validation set 

is composed of a total of 500 pixels, in which 250 pixels are 

farmland areas that are persistent throughout the period, and 

250 pixels convert from farmland to built-up. The test pixels are 

collected by visual interpretation from Google Earth high-

resolution images (Figure 4). This validation set has been used 

in our previous study (Yuan et al., 2015) and the results for 

both algorithms are compared. 

 

 

Figure 4. MODIS time series of a changed pixel and its 

corresponding area on the Google Earth imagery. 

 

The performance of HHMM using different numbers of states 

and GMCs in the bottom HMM is evaluated. As shown in 

Figure 5, the change detection rates in all the cases are higher 

than 92.4% with the false alarm rates lower than 3.6%. The best 

result is obtained using 8 states and 30 GMCs, with a change 
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detection rate of 98.4% and 4.4% false alarm rate. In 

comparison with the HCCDC algorithm, of which the change 

detection rate is 94.80% with a false alarm rate of 0.40%, the 

proposed method improves the change detection rate in charge 

for a small increase in the false alarm rate. The confusion 

matrices for HHMM and HCCDC are shown in Table 1 and 

Table 2 respectively. The overall accuracy of the proposed 

method is also slightly better than the HCCDC algorithm. 

 

In the HCCDC algorithm, the commission errors mainly come 

from the switching of crop types. In comparison, this method is 

more robust to interannual vegetation changes within farmland. 

Figure 6 illustrates an unchanged farmland time series and its 

corresponding state sequence inferred by the HHMM. Though 

the crop type of the pixel has changed in 2008, it is always 

identified as farmland in the HHMM (with different state 

durations in the bottom HMM). This might be due to fact that 

the method uses the time series of various crops to train a 

multimodel HMM, in order to model complex phenological 

changes in farmland. At the same time, the method can make 

full use of the prior knowledge of farmland change process the 

as well as the information of the entire time series to detection 

changes.  

 

The method is applied to detect farmland changes in Beijing 

during the time of analysis. 5 states and 10 GMCs are used in 

the experiment. Figure 7 shows the change detection results in 

Changping and Shunyi districts in Beijing. Cropland areas were 

changed dramatically in those regions. In order to highlight the 

changed pixels (shown in yellow), they are overlapped with a 

Landsat TM image acquired in August 8, 2010. Most of the 

changed pixels are detected from the visual point of view. The 

commission errors are mostly due to conversions from farmland 

to non-built-up land, such as forest. This is because our model 

simplifies the process of farmland change. 

 

Experimental results on the simulated and real data demonstrate 

good performance of the proposed method. 

 
 Reference Image 

U
ser im

ag
e 

 
Changed 

pixel 

Unchanged 

pixel 

User 

accuracy 
Commission 

Changed 

pixel 
246 11 0.957 0.043 

Unchanged 

pixel 
4 239 0.984 0.016 

Producer 

accuracy 
0.984 0.956 - - 

Omission 0.016 0.044   

Overall accuracy = 0.970 

Table 1. The confusion matrix for HHMM with 8 states and 30 

GMCs. 

 
 Reference Image 

U
ser im

ag
e 

 
Changed 

pixel 

Unchanged 

pixel 

User 

accuracy 
Commission 

Changed 

pixel 
237 3 0.988 0.012 

Unchanged 

pixel 
13 247 0.950 0.050 

Producer 

accuracy 
0.948 0.988 - - 

Omission 0.052 0.012 - - 

Overall accuracy = 0.968 

Table 2. The confusion matrix for HCCDC. 

 

 

Figure 5. Performance comparison between models trained with 

different number of states and GMCs. 

 

 

Figure 6. A farmland time series and its corresponding state 

sequence in the bottom HMM. 

 

 

(a) Changping 

 

(b) Shunyi 

Figure 7. Chang detection results in Changping and Shunyi 

districts in Beijing. 

 

5. CONCLUSION 

In this study, we proposed a novel method to monitor urban 

encroachment onto farmland using SITS. In this method, the 

farmland change process is modelled by a three-level HHMM. 
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A change from farmland to built-up is detected by inferring the 

underlying state sequence that is most likely to generate the 

input SITS. 

 

The performance of the method is evaluated on both simulated 

and real changed MODIS time series. The experimental result 

demonstrated that our method outperforms the HMM-based 

method with a lower change detection rate. It is because our 

method is more robust to interannual vegetation changes within 

farmland. 

 

However, this study also has limitation. Conversions from 

farmland to other land use types are ignored in this method, in 

order to simplify the model design. As further research, more 

land use types are going to be integrated in the model. 
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